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ABSTRACT 

Computer graphics is largely concerned with the creation and 
display of images on a display device. Color display devices sup- 
port images with very high resolution and dynamic range. As the 
power of the display devices increases, and the color capacities 
become more sophisticated, attention to the principles of color 
science becomes increasingly important. These principles can be 
applied to many aspects of computer graphics to improve the 
appearance and correctness of displayed images. 

This thesis presents a nuhber  of new algorithms in computer 
graphics; algorithms concerned with display or manipulation of 
color images. New algorithms are presented which optimally 
approximate the display of colors which the technotogy cannot 
recreate, which quickly translate between one color system and 
another, which simulqte the subtractive mixture of filters and 
dyes, and which simulate the pigmentary mixture of paints. 
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1. INTRODUCIlON 

"there W W  TW ~ W S  br -R - 0- C O ~  WUf maS of CO&T. &U&ng mcq( h C O N  

mt in Uu histo?( of ad, but c o b r  conusfirst in hwnun casciousruss" - Manet 

The fleld of color computer graphics is by definition intimately bound to 

color. Color is the medium of c6mmzchiccrtion of color computer graphics, 

influencing and describing all images. The improper use of color can harm the 

appearance of otherwise valid scenes, yet the role of color science has been lit- 

tle studied and little applied to the fleld until recently. 

This thesis deals with applications in these two realms: color science and 

color computer graphics. 

These two flelds are symbiotic to  a greater degree than is usually realized. 

Color science uses computer graphics to confirm, display, and evaluate results 

of its theories. Computer graphics uses color science on a more pervasive and 

fundamental level: the correctness and ease and speed of creation of computer 

graphics images and algorithms are all afTected by color science. 

Accordingly, the applications in this thesis fall into two categories: using 

color computer graphics to model color phenomena and applying color science 

to create and improve algorithms in color computer graphics 

, 
The fist two chapters introduce these two flelds. This thesis is aimed 

towards a general computer science audience. Therefore, the introduction to 



color computer graphics focuses only on principles and notation which are 

unfamiliar to  the computer science community a t  large. Conversely, the color 

introduction goes into far more detail than would normally be presented in a 

physics thesis. 

After the two introductory chapters, chapter 4 deals wi th  a specific color 

system translation, a translation used whenever a color is displayed on the 

display device. 

Chapter 5 presents a new algorithm for another color system translation, 

an algorithm nearly 50% faster than the standard algorithm 

Chapter 6 discusses approximation of colors that the display device cannot 

recreate. A new algorithm is presented that quickly gives an optimal approxi- 

- 
mation. 

Chapter 7 presents two heuristic algorithms that create spectral and 

reflectance curves for a color, given only its visual appearance on the display 

device. 

Chapters 8-10 deal with color mixture and implementation of color mixture 

algorithms. The classical results in additive, subtractive, and pigmentary mix- 

ture are reviewed, with the presentation and evaluation of three heuristic algo- 

rithms, two simulating subtractive mixture, and one simulating pigmentary mix- 

ture. 

Chapter 11 concludes the thesis with a brief summary of the new algo- 

rithms, and a discussion of open problems. 

A small m o u n t  of mathematical sophistication is assumed; Linear algebra, 

probability theory, computational geometry, NP-completeness, and abstract 

algebra are used. Brief explanations are given and references provided for the 

more esoteric parts. 



2. 90ME TEKIQNOlDGY AND NOTATION 

This thesis is largely concerned with the display of images on a raster dev- 

ice. These devices are. composed of a tightly packed two-dimensional array of 

individual pizels,  each possessing its own color. A pixel is comprised of three 

phosphws that are excited by the raster devices' electron gum, and a triple of 

integers associated with each pixel determines the intensity of that excitation. 

Each component of the triple is an integer ranging from 0 to N, where N is a 

function of the particular frame bufTer. A t  Berkeley, an Adage/lkonas RD3000 

frame buffer is used with N = 255. 

The frame buffer's pixels will be treated as a two-dimensional array, 

pizel(ij). In accordance with normal array representation, the (0.0) pixel 

corresponds to the upper left of th8 display device. The set  of pixels on a cer- 

tain row is termed a scanline. 

The two-dimensional pixel array has two operations defhed on it: 

pixel(i,j) := C , 

sets the pixel a t  row i, column j, to  some color C. Chapter (6) discusses a pre- 

atering process to ensure that each component of C is between 0 and N. 

Similarly, 

C := pixel(i,j) 

determines the pixel value stored in the frame butler, and places it in the vari- 

able C, assumed to be of type "color". 



The process that specifies the set of pixels most closely matching a shape is 

scan conversion. Frame butIers are often used to display geometric shapes, 

often in polygonal form. The process by which a geometric description of a 

polygon is rendmed on a frame buffer is polygon scan convembn. When 

polygons are rendered, their edges will often cover pixels only partially: 

& w e  2.1 : a po1ygon"edge partiaily covers pizels 

porn Newman and SprouU, pp. 403 

If the polygon edge is not properly sampled, a defect termed aliasing is 

introduced. fi-aLiasin.g removes spatial high frequency components that can- 

not be properly rendered with the sampling process inherent in a display with 

discrete pixels. 

In some applications, the user operates directly on the frame buffer 

representation of the image, as if "painting" on the image directly. Programs of 

this type are termed paint programs. 



3. INTRODUrnON TO COLOR SCIENCE 

3.1. lntroduc tion 

There is one fundamental, simple question at  the heart of any discussion of 

color; the answer and its ramifications comprise this chapter. 

" H w r  c a n  a color be quantitaiwely measured?" 

This question is by no means as trivial as it seems, for color is not a tangi- 

ble, objective. physical entity. Rather, it is a sensation received by the brain. 

Indeed, i t  might seem that measuring color is essentially impossible; pain is a 

sensation, yet i t  certainly can't be measured quantitatively! 

A restatement of the issue, which also points to an answer, is provided by 

Heaton? 

"The production of colour is dependent upon light - in the absence of kght nothmg can be 

coloured. This sounds a platitude, but it is as well to bear definitely in mind that colour is 

entirely an abstzaction, having no tangible existence" (pp. 1) 

The statement "in the absence of light nothing can be coloured" may seem 

atrange; does a red apple in the refrigerator suddenly lose its color when the 

door is closed? While the apple is the same physical object, it is no longer 

bathed by the communicating medium of light, and can communicate no sensa- 

tion of color to the observer. In order for color to be measured, both an 

obseruer and a Light must be present. 

This intimate connection between color, lights, and observers will permeate 

this thesis, and especially this chapter. To answer the original question, it 

seems reasonable, therefore, to attempt to  measure color somehow by present- 

ing colored lights to an observer. 



3.2. Color matching 

One way colors can be specifled numerically is by color matching. When two 

colored lights are shone upon a surface, a color is sensed. By varying the 

strengths of the two lights, a variety of different colors are seen (sensed) by the 

observer. This set of sensations, then, can be described numerically by a pair of 

numbers, the relative settings on the two lights that recreated it. For example, 

the color seen when both lights are at  three-fourths strength would be described 

as (1/2, 1/2), numerically. 

This provides a mathematical description of equi'ualence of sensations: the 

color seen when each liiht is a t  three-quarters strength provides the same sen- 

sation as that of the original colored light being matched. Similarly, the color 

seen when each light is a t  one-quader strength would differ only in luminance, 

and would be considered equivalent in "colorfulness" or chmmcrtinty. 

The two colored lights span, algebraically, a Line segmenf of sensed colors. 

By adding one more light. a t r iangle  of colors can be obtained In general, when 

n are available, a convex n-gon of colors is obtained. This is one of & m a n ' s  

Laws of color mixture, discussed in section (3.4). 

82 1. Negative light 

It is well known, for example, that red light shone with blue light produces a 

magenta (purplish) light. If the primaries of the light mixture system were red 

and blue, then. magenta would have coordinates of (1/2,1/2). 

But what if red und mugenfa are the two primaries? How is blue described? 

This is done by the obvious but non-intuitive use of negative color coordinates. 

Blue has color coordinates of (-1/2,1/2) with red-magenta primaries. This does 

, not, of course, mean that -1/2 unit of red light is shone on top of magenta light 

in order to recreate blue light. Rather it means that -(-1/2) = 1/2 unit of red 



hght, when shone with the blue light, produces the magenta light. 

Equality of color will be used in the mathematical sense hereout, based on 

an equivalence of smcrtim, not of any objective quality. Two surfaces may 

differ in every physical property, and yet still produce the same color sensation; 

this is the phenomenon termed metamerirm. 

5.3. me dimensionality 

A tentative step has just been taken into the numerical description of color. 

If a color can be described by some set of numbers, the next question regards 

the dimensionality of that set: "Assuming color can be measured numerically, 

how many dimensions does it span?" 

To answer this question, it is ngcessary to understand something about the 

w o r k i s  of the human eye. 

8 3.1. Human vision 

The human visual system contains three color systems. Each system 

possesses an d s o ~ t i o n  ~ e c h m ,  describing the sensitivity of that system to 

light of each wavelength. 



figure 3.1: absorption of the three human c o l w  sy s t ems  

fmm Foley and V m  hf7 pp. 605 :. 
* 

Each color is sensed by the brain (before any processing) via the transrnis- 

sion of three pieces of information, the amount of stimulation undergone by 

each color system. The amount of stimulation is a function of two parameters; 

the spectral composition of the light. and the intensity.15 For example, the Blue 

cume above has an absorption percentage of 14% for 520 nm, and 6% for 600 nrn. 

The Blue system transmits the same information upon sensing 1 unit of 520 nm 

light as it does when sensing (14/8) units of 600 nrn light. 

The three systems immediately imply the three-dimensionality of color. 

This fact will be used often in the thesis; colors being represented in any number 

of three-dimensional terms (points in 3-space, vectors in %space, points in 2- 

space with a weight, elements of a 3-dimensional abelian group, etc.). 

A t  this point, it  might appear that the problem of color reproduction can be 

' very easily solved. If the brain receives three pieces of information (one from 

each system), one need only And three lights, each of which excite exactly one 



system. Then any color could be easily matched by adjusting the three primary 

lights to match each of the three levels desired, recreating the sensation of the 

desired color. 

This cannot be done, as demonstrated by the previous picture. There is no 

wavelength which excites only the green system. 

If the responses of the three system a t  each wavelength are summed, a map 

of the energy response of the eye to  light a t  each wavelength is developed. 

Pgu~e 3.2: the n u v e s  01 jigurn 3.1, summed 

from Foley and Van D ~ R ? ~ ~ .  606 

The greater the height of the curve, the more receptive the eye to light of that 

wavelength. Therefore, this curve provides a graph of the perceived luminmce, 

or brightness, of each wavelength, a useful curve which will be re-introduced in 

section (3.10). 



3.4. Grassman's laws 

By performing a number of experiments with mixtures of three lights, the 

&st principles of colored light were summarized by Grassman in 1853. and are 

called C ~ ~ ~ S I I K L ~ L ' s  Laus. The notation A - B means "colored l iht(s)  A produce 

the same sensation as colored light(s) B". The notation A + B means "colored 

Light A shone upon colored light B". 

1) Any colored light A can be expressed as a unique combination of any three 

other lights: 

V A , B , C , D  3! b , c , d  ] A - b B + c C + d D  (3.1) 

2) A match remains a match, when all lights involved are increased in bright- 

ness by the same factor: 

( A - B )  F S * ( ~ A - ~ B ) ,  V k  r o (3-2) 

3) If a liiht A is matched by some other combination of colored lights, that 

combination can be used in place of A in all cases, with identical effect. 

This law forms the basis for modem color reproduction. 

Grassman stated one assumption, as well: 

1) The luminance produced by the additive mixture of a number of lights is 

the sum of the luminances provided separately by each of the lights. This 

assumption forms the basis of modern photometry. 

These laws can be shown to mathematically categorize color as a three- 

dimensional vector space: three-dimensional due to the nature of the human 

eye. a vector space due to Grassman's second and third laws. 

Any color space whose primaries comprise three basis vectors in this 

three-dimensional space are termed additive color spaces. 

From the three laws, Grassman proved that the color formed by the mix- 

ture of colored lights is the weighted average of the colors of the constituent 



lights. The weights correspond to the relative proportions of the hght in the 

mixture. 

I t  has been shown that under certain unusual conditions Grassman's Laws 

may not hold, but they hold over a sufficiently large range of conditions with 

suiYiciently large precision that their validity is generally accepted. 

95. Chromaticity 

The color triangle described in section (3.2) is, obviously, two-dimensional. 

As demonstrated in the previous section, color (to humans) is a three- 

dimensional sensation. Therefore, it follows that one dimension is being left out. 

This dimension is the dimension of brightness or luminance, since only the rela- 

m e ,  and not the absolute amounts of the primaries are specified in the triangle. 
* 

Since these triangles describe the coLor$+dness or chronaticity of the 

colored light, they are called chromaticity ~ a m s ,  and the coordinates of a 

color in such a map its c)aornaticify coo?dinates. 

as. 1. The CIE chromaticity diagram 

By using exactly the procedure described in section (3.2). colorists derived 

the famous chromaticity diagram of color visible to the human eye seen below. 

h i s  diagram is termed the CIE chmmatkify &gram for the CIE ("Comrnision 

Internationale de 1'Eclairage") international society of colorists. 

the eflect of the mumding  background colors on the color perceived for the foreground 
odor L also ignored 



figure 3.3: f he C'E chrornaCiczCy diagram 

from wrightfa pp. 95 

The set  of colors found on the boundary is termed the spectral locus,  con- 

sisting of all colors that contain only a single spectral wavelength. 

This figure is perhaps the most important in the thesis. It maps any color 

perceivable by the human eye (projected onto the luminance plane) into a two- 

dimensional point. There is one feature of great importance in this figure: it 

cannot be inscribed by a triangle o jv i s ib le  colors. 

While the set  of visible colors can be inscribed in a triangle, this triangle 

c m t  contain, as vertices, colors that are themselves realizable. There will 

always be colors which are not obtainable as a mixture of any given three pri- 

maries. Similarly, a triangle can be inscribed in the chromaticity diagram, but 



this triangle will not contain all the realizable colors. 

3.6. rgb space 

This leads naturally to the next question: "if all of color space can't be 

spanned by any three primaries, which choice of primaries would d r n i z e  the 

percentage of color space spanned?". In fact, those three primaries are exactly 

red, green. and blue! 

The intuitive importance of these three colors is thus confirmed mathemat- 

ically. The precise placement of red, green, and blue actually varies slightly 

from this theoretical solution, for technical reasons dealing with the luminance 

of available lights and the sensitivity of the eye to diflerent areas of the spec- 

trum. The exact wavelengths chosen * are shown below: 

- 

Wavelengths of C.I.E. spectral red, green, and blue ( nm ) 

red 

green 

blue 



figure 3:4: the theoretical ad actual placement 01 

CIE?ed, green, ad blue 

The triangle of colors spanned by C.I.E. red (r), green (g), and blue (b) is 

termed rgb space. The 7gb coordinates describe the ~ e l n t i v e  intensities of the 

three lights. 

In RGB space, the absolute values are specified. As the absolute values 

represent the "absolute stimulus", and there are three of them the absolute 

values are termed the triscimul'us c o o r ~ t e s  of a color. 

The RGB value of a color, then, represents the absolute stimulus amounts of 

Red, Green, and Blue light neededto match the sensation of some given color. 

Red, Green, and Blue are defhed as monochromatic light of 700, 546.1, and 435.8 

nanometers, respectively. Since often only the relative amounts of the hght are 

desired. the luminance can be factored out, resulting in 7gb space: 

r = R/(R + G +  B) , (3.4) 

g = G/(R + G +  B) , 

b = B / ( R  + G +  B) = l-r-g 

This convention is used for other color spaces as well; lower case refers to 

chromaticity (relative) coordinates, while upper case refers to tristimulus (abso- 

lute) coordinates. 

By the previous figure, the set of colors spanned by rgb space is 



figure 3.5: CIE spzce ad rgb  V a c e  

from Evans, pp. 238 

point A can be matched by a combination of red, green, and blue 

point B is visible to the eye, but cannot be matched by red, green, and blue 

point C is not visible to  the human eye. 

8 7. Unwinding the spectral locus 

The preceding Agure defines the placement of every point in the spectral 

locus. However, it does so geometrically, not algebraically; it is not easy to 
* 

determine the chromaticity coordinates of a color of wavelength A. 

This can be done by "unwinding" the spectral locus. Given a triad of Red, 

Green, and Blue lights of some Axed luminances, we can take every spectral 

color of unit luminance and obtain a triple of numbers by the process of section 

(3.2). By repeating this process across all wavelengths, three curves are 

obtained; one for each of Red, Green. and Blue. These curves are termed the 

coh7lnatching curues for a given set of primaries, since they specify how much 

of each colored primary is needed to match any given spectral color. In the 

case of rgb primaries, some of the curves dip below zero. 



f l g w e  3.6: the rgb coim-matching c w v e s  

3 1 from Hunt, pp. 77 

3.6. F5nding the RGB value of a color 

The next question is one of physical measurement: given a colored surface 

or light, how is its RGB value computed? 

This could be done by the procedure mentioned in section (3.2): A triad of 

colored lights could be obtained, manually adjusted until they recreated the 

appearance of the desired color, and the readings of the dials then read. In 

practice, this is time-consuming, inelTicient, and inaccurate. 

Usually, a spec~ophofons fe r  is used to  obtain a reflectance a t  all visible 

wavelengths (see Agure (3.7)). 



figure 3.7: a sample reflectance cume 

j h m h r a n s ,  pp. 95 

* 

3.B 1. Redectance w. transmittance 

This sample reflectance curve introduces an important issue, the dual 

nature of color science and color measurement. 

The curve in figure (3.7) has an upper bound of 1. This represents the fact 

that a surface can never reflect more light than is shone upon it. 

If one were to hold a flashlight one foot from the surface of the sun, how- 

ever, the sun's surface would nevertheless be brighter than the light of the flash- 

light! This is because the sun emits light. being aseLf4urnihous body. 

Accordingly, there are two curves used in color science. Reflectance 

curves, as mentioned above, represent the percentage of light which is reflected 

at each wavelength from a surface. 

lpransmittmce curves, conversely, represent the light energies which are 

h a m i t f e d  by the light source a t  each wavelength There is no upper bound on 

these curves; within the realm'of physical possibility, the sun's energy can 



become inflnitely great. 

In addition, in optics, internal h a m a t a m e  curves are sometimes used to 

describe the percentage of light which is transmitted through a Alter. 

3.8.2. Translation from curve to RGB 

The translation from spectral reflectance (or transmittance) curve to RGB 

value is non-trivial. and can be visualized concretely by considering the simple 

example of monochromatic light. 

Consider the example of a spectral color, caused by Light of wavelength 550 

nrn. Then the transmittance curve is 

f i g w e  3.8: monochromatic t n r m i f t a n c e  

Multiplying the rgb color matching curves (Agure (3.6)) by the preceding 

curve, Agure (3.9) is obtained: 



f igure  3.9: tnznsmif tance mafching funct ions 

The heights of the three multiplied curves exactly match the desired RGB 

value. 

In general, the RGB values lor any transmitted light are computed ass 

d a r e  

SA is the spectral energy of the stimulus a t  wavelength h 

FA,  gA . 6 A  are the red, green, and blue color matching functions. 

In case of a different color system, with differing matching functions, only 

the new matching functions need be substituted into the above equations. 

FA,  PA , 6~ have negative values in places. 

3.8.3. RGB value of a surf ace 

Only half of the problem has been solved; computing RGB from spectral 

tnrnSmiitalzce.  The case of spectral ref lectance is handled below. 

Consider the red apple mentioned a t  the start of this chapter. Its color can 

be measured by shining white light onto it, and then measuring the light that is 



20 

reflected off the apple. In that case, the procedure of the preceding section 

could be used. 

But now, suppose the light shining on the apple is increased in intensity. 

Naturally, the apple now appears brighter. However, the surface of the apple 

has not changed its properties. Therefore, the tri-stimulus values of surface 

colors are M d e d  by the Luminance of the illuminating light. This result will be 

restated mathematically in section (3.10),  when a more precise definition of 

luminance is given. 

b0.4. Surmntuy 

A triple of numbers representing a color has two markedly different mean- 

ings, depending on whether it represents transmitted (emit ted colot) or 
* 

reflected color (object co lw) .  

This difference is often glossed over, due to their similarities. For example, 

a green-colored surface can be obtained either by shining a green Light source 

on a white surface, or a white lrght source on a green surface. 

3.9. Advantages and disadvantages of RGB space 

RGB space has several advantages: RGB value can be computed from spec- 

tral curves, RGB space forms a three-dimensional vector space, and physical 

recreation of color from RGB value is simple. 

3. 9.1. Disadvantages of RGB space 

RGB space has two colorimetric disadvantages. As mentioned in section 

(3.7), the color-matching curves are not non-negative, which could make compu- 

tation of RGB values from spectral curves awkward. In addition, the three 

color-matching curves are asymmetric in area, a skewing factor that must be 



corrected for (see equation (3.3)). 

From the standpoint of user interaction, RGB space is also unfortunate. 

The p e w e p t d  distance between two colors is a relative measure of the amount 

by which two colors appear to differ to  a human observer. These distances can 

be determined via psychometric just-noticeable-difference ( p d )  techniques. 

Equal distances in RGB space do not correspond to equal perceptual difference. 

For example, the RGB distance between magenta (1,O.l) and blue (0,0,1) equals 

that between magenta (1,O.l) and white (1,1,1). Yet magenta looks quite similar 

to blue, while magenta and white are strikingly dissimilar. 

Similarly, it is difficult (especially for a naive user) to conceive of a color in 

terms of its RGB value. What are the RGB values of grape? of tan? of banana yel- 
* 

low? Al l  but the simplest colors are difficult t o  specify in the RGB system. This 

may be one of the reasons why computer graphics images that are highly com- 

plex in every other aspectt, tend to have very primitive and simple colors. 

3.9.2. RGB space versus monitor space 

Despite overwhelming assumption to the contrary by graphics program- 

mers, RGB space is NOT the color space used by present r n o n i t o r ~ ! ~ ~ ~ ~ ~  

Monitors contain three electron gum. There is an array of phosphors on 

the screen. arranged in groups of three. Each phosphor in the group is excited 

by a different gun. By controlling the intensity of the beam from the electron 

gun, the amount of light emitted by the phosphor is controlled. 

If the red, green, and blue phosphors had exactly the colors of C.I.E. Red, 

Green, and Blue, this would in fact be identical to the RGB system. As the Agure 

below demonstrates, this is not the case. The set  of colors achievable by the TV 

t for example, the "refracting sphere" eequence by Whitted, and the "GrowW nquence by 
Kawaguchi 



monitor is a proper  subset of RGB space. 

figure 3.10: CIE vs RGB vs m o n i t o r  space 

The color space spanned by the monitor, then, is simply another additive 

color space, with a different set of primaries from the RGB primaries. The moni- 

tor color space wil l  be referred to  a s  mRGB space, and the value of gun excita- 

tion which produces a color as i ts  mRGBvalue. The m7gb space of chromaticity 

coordinates is defined in the canonical way, obtained by dividing the mRGB com- 

ponents (mR, mG, and mB) by their s u m  

As can be seen from the preceding flgure, the RGB coordinates of a color 

are somewhat similar to the excitation levels of red, green, and blue electron 

guns on a raster display device needed to reproduce that color, but this they are 

not identical. 

The mRGB system, just as the RCB, deals with transmitted light, the amount 

of light transmitted by each of the three primaries. Unlike RGB space for 



transmitted lqht, however, mRGB space is a bounded space. This is a constraint 

imposed by the physical device, the guns possessing a maximum energy. The 

problem of displaying a color possessing a luminance too great for monitor 

display is discussed in chapter (6). 

The disadvantages of the RGB system for colorimetry are substantial; the 

negative (and unbalanced) matching functions, and the lack of an easy lumi- 

nance metric make it impractical for colorimetric use. 

In 1931, the CIE proposed a color system to mitigate many of the failings of 

the RGB system. This system uses three different primaries, the X, Y, and Z 

axes to span color space; hence the lerm XYZ space. 

There are, of course, an infinite number of primaries that could have been 

chosen. The XYZ primaries were chosen very intelligently to satisfy a number of 

criteria, including: 

1) The primaries should span rrll of color space in non-negative combinations. 

This irnrnediately implies that the primaries are hot visible c o l m  (see 

Q u r e  (3.5)). This concept is a simple one, mathematically; any set of three 

(linearly independent) basis vectors will span color space; there is no rea- 

son why the color points corresponding to those vectors need be inside 

color space. 

Again, in the RGB system the R primary, for example, represents an amount 

of physical red light. In the XYZ system, however, no single primary represents 

a physical light; the primaries simply span the space of visible color in non- 

negative combinations. 

This non-negativity immediately implies non-negative color-matching func- 

tions, which greatly aids the reconstruction of XYZ values from spectral curves. 



2) The total area under each of the color-matching functions should be equal. 

Otherwise, a normalizing division must be done when computing XYZ values 

from spectral curves, as in equation (3.3). 

3) Color essentially consists of two different qualities: chromaticity (two- 

dimensional) and luminance (one-dimensional). Tymg one of the three 

basis vectors directly to luminance is desirable. 

The CIE satisfied this requirement in an ingenious way. In the discussion of 

color vision, a function was derived encoding perceived luminance as a function 

of wavelength (tlgure 3.2). If one of the color-matching functions is made equal  

to this curve, it will, by definition, capture the luminance of color. 

The CIE Y axis was chosen in precisely this manner, and represents the 
* 

luminance of color. The X and Z axes were chosen in order to A t  other require- 

ments in conjunction with the existing choice of Y, and possess no lurni- 

nance.%lW The three axes so chosen specify the well-mown XYZ color-matching 

functions: 



figure 3.11: the XYZ c o l w m d c h i n g  functions 

from ~udd:' pp. 43 

For a further discussion of the foundations of the XYZ system, see Hunt.31 

J ~ d d , ~ ~  Hunter,32 W y ~ z e c k i , ~ ~  or especially Wright.e3 

The XYZ values are computed from spectral transmittance by (from 

where 



SA is the spectral energy of the stimulus a t  wavelength A, and ZA , gA , andZA 

represent the color matching functions. 

The XYZ values are computed similarly from spectral reflectance by32 

where 

EA is the energy of the illuminant at  wavelength A 

RA is the percent reflectance of the color a t  that wavelength A. 

These equations demonstrate the division by scene luminance described in 

section (3.8.3). As the intensity of the illuminant is increased so do the denomi- 

nators, resulting in an equivalent XYZ value. 

By definition, the Y for the perfect white is thus 1.0. 

Just as in RGB space, the tristimulus XYZ values can be mapped to their zyz 

chromaticity coordinates by 

z = X / ( X + Y + Z )  , (3.7) 

y = Y / ( X + Y + Z )  , 

z =Z/(X+ Y + Z )  = 1-2- 



Any two of the three chromaticity coordinates, in conjunction with the lumi- 

nance Y, thus describe any color, while (-2) does not. This z y Y q a c e  has the 

distinct advantage that two dimensions (x and y) uniquely describe the chroma- 

ticity, while the third (Y) describes the luminance. 

3.10.2. Psychophysical systems 

None of the color spaces mentioned so far have necessarily possessed any 

relationship between Euclidean distance in the color space, and perceptual dis- 

tance. 

In 1937, MacAdarn proposed a UVY color system obtained as an algebraic 

transformation from xyY space; the transformation is explicitly designed such 
* 

that equal distances in w space correspond to equal distances in perceptual 

space. This system did not extend this property into the luminance dimension, 

and 1963 the C.I.E. proposed the PPW* color system, which maintains this pro- 

perty in all three dimensions (the L8a*b* is another modification of this system). 

The deArung transformation required to transform UeVeW* coordinates to or 

from RGB coordinates is cornputationally expensive, and the system has been lit- 

tle used to the author's knowledge. Two similar color systems, the ClELUV and 

C1ELA.E color systems, also attempt to map color to a color space with Euclidean 

perceptual distance. 

There is some uncertainty regarding the semantic validity of these color 

spaces. Color consists of two qualities, chromaticity and luminance. While it 

appears reasonable to create mappings for chromaticity distance and lumi- 

nance, it may be meaningless to connect these mappings into the third dimen- 

sion, a point made excellently by Evans:= 

"At Anrt &t [ such a color space ] would appear to be logical and worth while and seems 



not only passible but plain common sense. There are many reasons to believe, however, 

that such an arrangement is a purely irnaginarg concept which could be realized in a 

practical way only by so restricting its meaning and application as to make it quite u s e  

leas. In the !bat place a just perceptible difference in one part of the color solid may not 

have the same meaniq that it does in another. Almost certainly four just perceptible 

didcrences in brightness are a diflerent kind of difference than four in hue, etc. In other 

words, whereas such an arrangement has a very logical-soundmg basis, it does not neces 

d y  lead to wiul concepts. What is redly wanted is an arrangement of colors having 

the property that a d i s t t ce  in one region indicates a color diiIerence which looks like 

the same dinennce aa that indicated by a line of the same length somewhere else. Much 

evidence seems to be accumulating that such an arrangement is generally an impossibil- 

* 
ity" - pp. 224 

Transmission of color television signals required another choice of color 

system. In the United States, the NTSC ( National Television Systems Commit- 

tee) chose a set  of basis vectors such that one represented the luminance of the 

color (Y), and another lay along the axis of flesh tones (I). The third axis (Q), 

was simply chosen to  be have a vector component sum of 0, and to be indepen- 

dent of the other two. 

This YIQ system is a linear transform from RGB space, Y encoding the lurni- 

nance information. The advantage of this decision is that the same signal can be 

sent to both color and black-and-white displays. Black-and-white sets use the Y 

signal to  control gray level, and ignore I and Q. 

The Y axes in the YlQ and XYZ system are i d e n t i ~ a l . ~  The "YIQ Y is defined 

as27 

YnQ = . 3 h R  + .59mG + .llrnB 



for a standard color monitor, while the 'XYZ Y" is defined as 

Ym = .17R + .81G + .01B 
for CIE Red, Green, and Blue. The axes are identical; the different coefficients 

describe the location of the Y axis as combinations of two diierent sets of basis 

vectors; I mR, mG, rnBj for YlQ Y, I R G, B j for XYZY. 

3.11.1. Monitor correction 

When a YIQ signal is received by an NTSC color television, it is transformed 

via a matrix transform into a mRGB value. These &GB values cannot be passed 

directly as gun voltages, however, since the light output by the tube is propor- 

tional to a power 7 of the applied voltage. 

The process that aligns line& increases of mR,mG, or mB with linear 

increases in light output is accordingly called gamma. correction, and is typi- 

cally applied by taking the y'th root of the mRGB values. y commonly ranges 

between 2.5 and 3.0, depending on the monitor.4B 

3.12. Dominant Wavelength and Purity 

Any color consists of varying amounts of light across wavelengths - these 

specify the color precisely, as in the XYZ system One way to specify a color's 

chromaticity is by its dominant wavelength (A), and purify (p) 

A is the particular wavelength of light the color emits to the greatest 

degree. Given A, a color can be recreated by a mixture of white light with pure 

light of wavelength A p is the percentage to which that wavelength predom- 

inates in the curve.s2 



figure 3.12: the A p system 

p o r n  ~ b b o r n g f '  pp. 93 

This A p  system is very naturally described geometrically in an xyY chroma- 

ticity diagram. If a line is d r a m  containing the white point E and the chromati- 

city coordinates of the desired color S. it will intersect the spectral locus at  

some pure color D of wavelength A The purity is d e h e d  geometrically as 

The purity is therefore the ratio of two distances: the distance from the 

white point to  the given color, as opposed to the distance from the white point to 

the spectrum 1 0 c u s . ~  

A corresponds exactly to hue. and p to saturation. This system thus pro- 

r'vides a bridge between the purely technical xyY and XYZ color spaces, and the 

more intuitive hue and saturation-based color spaces (see below). 



3.13. Pemeptual color spaces 

The color spaces described have been rigid mathematical spaces, used for 

scientific and engineering purposes. Artists and painters have also used color 

. for hundreds of years, and have developed color systems of their own. These 

color systems are often termed perceptud color spaces since they are con- 

sidered to  align more closely with intuitive human conception of how colors are 

ordered. 

Since their foundation is intuitive, not physical, the arrangement and place- 

ment of colors within these spaces has a good deal of liberality. 

There are two main artistic perceptual color spaces: the HSV (Hue, Satura- 

tion, and Value) and HSL (Hue, Saturation, and Lqhtness) spaces. 
* 

The hue of a color is loosely d e h e d  as "the main quality factor in 

color ... the essential element that leads us to name it red or green".Z3 Intuitively, 

it corresponds to the basic "color orientation" ("reddish", "bluish", etc.) of the 

color. 

The saturation of a color is the percentage of hue in a c ~ l o r , ~  or the "den- 

sity" of the color. For example, grayish-pink has the same hue as red, but a 

lower saturation. Colors w i t h  zero saturation (grays) are termed achromatic, 

and those with non-zero saturation chromatic. The chromaficity of a color is 

usually defined as its hue and its saturation. Similar to the previously defined 

chromaticity coordinates, these are  two color dimensions that describe a color 

without regard to the light intensity it emits. 

Hues are easily and naturally arranged in a circle. Red, green, and blue are 

equally spaced around the edge of the circle. Other colors are then located 

around the circle according to their red/green/blue proportions; the ratio of 

the two largest components each decreased by the smallest component. A color 

that is, for example, one-third red and two-thirds green is located one-third of 



the way from red to  green. All colors that only contain one or two of the three 

primaries can thus be located around the circle, according to the proportion of 

their primaries. This is the basic color arrangement we have all seen in paint 

stores. 

Note that virtually any arrangement of hues in the circle can be created, 

depending on the original spacing of red, green, and blue. The canonical 

arrangement has red, green, and blue equispaced around the circle, but any 

one-to-one and onto map of hue to circular angle is valid, since it preserves the 

descriptive power of the arrangement.37 Hunter for example,32 uses a circle with 

green twice as close to blue as red, Fishkin25 one with green three times as close 

to blue as red, and 30b love~~  performs a sinusoidal mapping to eliminate Mach- 
* 

banding. The particular intuition of the user and the particular requirements of 

the application determine the mapping. 

f igure 3.13: d f e r e n t  hue  cwcles, 

from SIGGRAPH con.' Fishkina' and Huntor 'r 

The amount of the third (smallest) primary determines the distance of the 

color from the center of the circle - the distance is defined as proportional to 



the color's saturation. For example, pure red would be on the edge of the circle, 

and pink on the same angle, but a little closer to  the center. 

To reiterate, the polar angle of a color is determined by the ratio of its two 

largest primaries, and its radius by its saturation. This polar coordinate system 

specifies the placement in a plane of a color in both the HSL and HSV systems. 

The difference is in the choice of the third dimension. 

3.13.1. The HEW system 

In the HSV system, the non-blackness of color, its value, is used for the 

third dimension. The value is defined in RGB terms as ~ ~ X ( R , G , B ) . ~ '  For exam- 

ple, black has a value of 0. grey a value of .5, and red, green, blue, and white all - 
have values of 1. This color system is represented by a cone, due to the singu- 

larity of black, the only color with a value of 0. The conical cross-sections grow 

gradually smaller as the singularity of black is approached. The radius of a 

color from the center on a cross-section defines the color's chroma.  The satura- 

tion of a color is usually defined as the ratio of the chroma to the maximum 

radius at that value. 



figure 3.14: the HSVsys tems  
r 'fa. 

of Von Bezold, pp. 106, and Kuppem, pp. 165 
* 

This color system is used often by artists, mainly because the base (value = 

1) contains most of the "important" colors, arranged in an intuitive format. 

Value is simply d e h e d  in RGB terms, as stated above, as max(RG,B). Ima- 

gine the colorcube described before, projected along its main diagonal (the 

greyscale) onto a plane perpendicular to this diagonal. A hexagonal outline 

results (think of the silhouette of a isometric drawing of a cube). This is exactly 

the set  of all colors with a value of 1. Similarly, the set of all RGB colors with 

maximum component less than or equal to some arbitrary value V, will form a 

smaller colorcube. The projection of this set possesses a hexagonal outline, and 

contains exactly the set  of colors with a value of V. 



f i g u ~ e  3.15: vdue = 1 in RGB space 

* 

For this reason, in some computer graphics l i t e r a t ~ r e ~ * ~ * ~ ~  the conical 

cross-sections of perceptual color spaces are often depicted as hexagons, while 

other author&23~32*M*63 use the more intuitive circular arrangement described 

above. While the hexcone may appear to be preferable in light of the geometric 

argument presented above, the fact that the set of colors with a given value has 

a hexagonal silhouette in RGB space does not imply that the same set of colors 

has a hexagonal silhouette in HSV space. 

3.13.2. The HSL System 

In the HSV system, the'third dimension measures the non-blackness of a 

color. In the HSL color system, the third dimension represents the whiteness or 

lightness of the color. This is defined in RGB terms as (max(R,G.B) + min(RG,B) 

/ 2).13 For example, black has a lightness of 0. red, green. and blue all have 

lightnesses of .5, and white has a lightness of 1. 

This color system is a double cone, due to  the two singular points of black 

and white. 



figure 3.16: HSL space 
13 

from the '79 Core, pp. 111-7 

Smith5B feels HSL space is less intuitive than HSV space, due to the double- 
* 

cone arrangement, while othersg8 prefer HSL. However, HSL does have the 

feature that grey, not white, lies a t  the center of the primary plane, which is 

desirable for some applications (see section (10.4)).% 
* 

3.14. Conclusions 

The computer graphics programmer can choose from many different color 

spaces. The desires to  correct monitor deflciencies. to provide users with an 

intuitive system, and to simulate physical color phenomena guide this choice. 

Image appearance, correctness, and description are all affected by this choice. 

There is no singIe color system that is best for all applications; as with program- 

ming languages, the needs of the application suggest the appropriate tool. 



4. ~ansltorming between XYZ and RGB 

Since both the XYZ and RGB systems are additive and describe all colors by 

their position in vector spaces spanned by three basis vectors, the two systems 

are related by an equation of the form 

The derivation of this transformation must be done with some care, and is often 

glossed over or ignored. Accordingly, in this section the transformation will be 

derived in some detail. 

4.0.1. Translating from xyz torgb 

The task of t r a n s l a t i  from XYZ to RGB can be approached by solving a 

considerably simpler problem; translating from xyz to rgb. By this translation 

the tristundus c o o d h a f e s  have been replaced by the c h - i t y  cow&- 

w t e s  by the familiar transform of sections (3.10) and (3.6). 

Xyz to rgb translation can be performed very simply, by referring to the 

chromaticity coordinates of standard red, green. and blue. 

chromaticity coordinates of red, green. and blue 

A in nm. 

red 

green 

700.0 

546.1 

,73467 

.27376 

.26533 

.71741 

0.0 

.00883 



The xyz to  rgb transform can be obtained by inverting the transformation 

. Yielding 

11.5771 -.5980 -.31221[11 ki = 1 -.5834 1.615 ,1005 y 
.0062 -.01?3 1.2117 I L I  

This equation is easily mistaken for the final answer. The chromaticity 

diagrams are planar slices of a three dimensional vector space; the transforma- 

tion given above maps lines onto lines in the three-dimensional vector space, 

not the desired map of points onto points. 

f igwe  4.1: two different mappings preserving chromaticity 

In other words, the xyz to rgb map is a two-dimensional one, while the 

desired XYZ to  RGB map will be three dimensional. Therefore, the rgb to x y z  

transforming equation above is under-specified for a RGB to  XYZ translation; a 

three-dimensional map cannot be derived solely from a two-dimensional one. 

While i t  guarantees that  the chromaticities will be mapped correctly, more 

information must be used in order t o  complete the transformation. 



4:o.z. Completing the t ~ o r m a t i o n  

The chromaticity transformation can be extended to a tristimulus transfor- 

mation by noting that any linear multiple of the chromaticity mappings forms a 

correct tristimulus transformation. For example, mapping ( l ,O,O)Rm to 

( .73467, .26533,0)~ will obviously maintain the correct chromaticity. But by 

definition of the XYZ to xyz transform, so will (.73467k,.26533k,0)xn for any 

non-zero k. 

The transformation can thus be written as 

This equation is solved in ply,@ by adding two ~ o n d i t i o n s . ~ ~ * 1 0 * 3 ~  First, in 

both systems achromatic light hasgequal tristimulus coordinates in each corn- 

ponent. For all k ,  (k ,k ,k)rn  must map to (m,m,m)RGB, for some m .  

Second, the color point representing one trichromatic unit of white in the 

XYZ system is constrained to transform to a color point representing one tri- 

chromatic unit of white in the RGB s y ~ t e r n . ~ ~ ~ ~ ~ * ~  The number of trichromatic 

units is simply the sum of the components. Therefore, in conjunction with the 

first claim, this claim implies that (I/ 3, I/ 3, I/ 3)R68 maps to (I/  3, I/ 3, I/ 3)rn: 

This can be trivially re-written as a linear system in three unknowns: 

Solving this linear system yields p = ,66694, y = 1.1324, and @ = 1.2006. 

Substitution of these values into equation (4.2) yields the Anal system: 



The inverse transformation is then 

This procedure is a specific case of a more general process. Equation 

(4.1.5) is a system of three equations in nine unknowns. By supplying the values 

of six (RG,B,X,Y,Z) of the nine unknowns, the system was solved. Any set of con- 

straints which supply six degrees of information will also serve. 

4.1. Transforming between mRGB a n d m  

Reviewing the process of the previous section, only two sets of data are 

required in order to translate between RGB and XYZ: the chromaticities of the - 
primaries, and the location of the "white point". Translation between mRGB and 

XYZ is simply another instantiation of this process. 

The chromaticity coordinates of the three phosphors will be denoted as 

CC, , C&, , and CC&. These coordinates can be obtained by direct measure- 

ment from the monitor involved, or, with less accuracy, from the manufacturer 

(see Cowan16 or Meyefig for details ). 

The luminance of the "white point" will be referred to as L v .  This can only 

be reliably derived from spectrophotometric measurement of the monitor 

involved. 

4.1.1. Translation between mrgb and xyz 

Knowledge of the chromaticity coordinates of the three phosphors allows 

specification of the chromaticity map, in an analogous manner to equation (4.1): 



The chromaticity coordinates of the monitor white point can be found by 

letting the mrgb coordinates equal ( 1/3, 1/3, 1/3) in the above equation. 

This mapping can be extended to the tristimulus coordinates by introduc- 

tion of the scaling constants: 

The p ,y ,/3 variables have been moved into the column vector for conveni- 

ence. 

Suppose that the luminance of the monitor white point is Lw. By equation 

(4.4). the chromaticity coordinates of the white point, ( zip. , yv ) can be found. 

Then by use of the familiar xyY to XYZ transform, the XYZ coordinates of the 

white point can be found: - 

Since the monitor white point, by deftnition, has rnRGB value of (1.1.1). this 

system can then be solved for the three unknowns p,  y,B. 



5. A NOTE CONCERNING HSL TO RGB TRANSFDRMATION 

5.1. Introduction 

Two perceptual spaces are commonly found in computer graphics: HSL 

space (first defined by the 1979 Core1= ), and HSV (first defined by Smiths7 ) 

space. 

In the HSL system, a color is defined by its hue, satwatton, and lightness. 

In HSV space ( d e h e d  in section 3.13. I), a color is defined by its hue, sufuracion, 

and its udue. The same color will have the same hue in both HSV and HSL 

space, but (possibly) different saturations. 

These are perceptual spaces in which the color axes appear to align closely 
* 

with intuitive human classification of color. For this reason, in many application 

programs colors are specified using perceptual systems. 

Applications often require the coordinates of the color transformed into 

RGB space (discussed in sections 3.6 and 3.9). Many applications (paint pro- 

grams in particular) require frequent use of these transformations in time- 

critical situations. For example, the user may wish to  change the lightness of an 

area of the screen, leaving the hue and saturation untouched. 

Using maz to represent the maximum of the RG, and B components of a 

color, and min to represent their minimum, Lightness (I), value ( v ) ,  and satura- 

tion (sL , sV) are  defined from RGB values as follows:l3~ 57 

maz-min 
maz+min if l4ji 

St ' maz-min ifl>M 
2-mcrz--nin 

(value) 

(satv) 

(light) 

(satl) 



the definition of the hue h in terms of RGB value is irrelevant for present pur- 

poses. 

This chapter presents an algorithm to invert the operation, determining R 

G, and B from h ,  SL, and 1. This is done by combining portions of two existing 

algorithms. The first is an HSV to  RGB transformation (referred to as 

HSVJ'OJZGB), the second an existing HSL to RGB transformation (referred to as 

HSQOJGB). These algorithms are reprinted at  the end of the chapter. 

5.2. The algorithm 

Given h ,  SL, and 1, the algorithm first computes the values of min and maz, 

then the values of sy and v , and finally the values for R, G, and B. 
* 

5.2.1. The computation of maz 

Consider the case IS%. We attempt to And nurz. 

In the other case, 1 >)$. 

m.in+moz mazlhin maz = 
2 

+ 
2 



This is an inversion of the derivation performed implicitly by the 

HSLJO_PGB algorithm in the computation of variable 'M' (see end of chapter). 

5.2.2. Computation of mirh 

The derivation of the value of min is much simpler: 

min=min+maz-maz 

This is an inversion of the derivation performed implicitly by the 

HSLJ'OJGB algorithm in the compulation of variable 'm' (see end of chapJer). 

For implementation. a strength reduction1 is employed: 

m i n = I + l - m a z  

5.23. Computation of v 

The computation of v is trivial. By equation (value), v = mrrz, which has 

been determined above. In the remainder of this presentation, maz will be used 

interchangeably with v . 

5.2.4. Computation of sv 

For the remainder of this algorithm, we assume the color is non-black 

(muz#O) .  This condition is easily detected; when it holds, the algorithm can 

stop a t  this point, returning an RGB value of (0,0,0). 

For a non-black color, sv is trivially computed by equation (satv) and the 

' results above: 



5.2.5. Computation of RGB 

Given A ,  sv, and v ,  the computation of R G, and B can be computed. v and 

min specify the maximum and minimum components of the triple. h deter- 

mines which of R, G, and B are assigned the minimum, medial, and maximum 

components. For example, when hS1/6, the color is reddish, R receives the 

maximum component value. s v  and h jointly determine the medial component; 

the medial component increases with s v ,  and decreases as the color approaches 

a "pure" hue. 

The computation is done easily (although opaquely) by the following 
sequence, produced by a simplification of the end of the HSVJOJGB algorithm: 

real variable stretch, sextant, vsf, midl, mid2, fract; - 
stretch := 6 h ;  

sextant := btretch]; 

fract := stretch - sextant; 

vsf := v s v  fract; 

midl := min + vsf; 

mid2 := maz - vsf; 
case sextant of 

0 : ( R G, B ) := ( maz, midl, min ); 

1 : ( R G, B ) := ( mid2, maz, min ); 

2 : ( R, G, B ) := ( min, msz, midl ); 

3 : ( R G. B ) := ( mzn, mid2, maz); 

4 : ( R, G, B ) := ( midl, mih, ma) ;  

5: (R, G, B )  := (maz, min, min2); 



The value of the median component is established through the variable 

"vsf"; the median value increases with u and sv, and decreases the closer 

the hue lies to a pure red. green, blue, cyan, magenta, or yellow (hence the 

presence of "fract"). 

5.3. Derivation 

The algorithm has been constructed from pieces of two existing algo- 

rithms, with an optimization performed in the Anal computation of R, G, B. 

Table 1 : sources for the variable assignments 

variable - derived from 

HSIJOJtGB 

HSIJOJtGB 

known indirectly 

HSVJOJGB 

5.3.1. Comparison 

The standard HSVJOJGB and HSlJOBGB algorithms, as well as a 

description of the new algorithm, are given at  the end of this chapter. 

The following table gives operation counts for the three algorithms. 

Fractional operation counts for HLSJOlGB reflect the fact that the algo- 

rithm execution time depends on hue. 



HLSJ'OJCB new HSVJOJGB 

tests 

calls 

floor 

. - . - 
+ 
- 
m 

/ 

For run-time profiling, t&e algorithms were invoked 1,000,000 times 

on random input: the standard HLSJOJ2GB, HSVJOJGB, and the new algo- 

rithm. 

A t  each iteration, the outputs of HLSJOJGB and the new algorithm 

were compared, and any differences reported; none were found. 

The programs were written in the C programming language, and exe- 

cuted on a time-shared VAX 11/750 with a floating-point accelerator under 

the Berkeley Unix operating system The pf command was used to 

obtain run-time profiing. The cc -0 option was used to generate optimized 

code : 

Algorithm unoptimized optimized 

time * % time Z 

HSVJOJtGB 176.36 43.30 150.86 46.45 

HLSJOJtGB 407.27 100.0 324.75 100.0 

new 232.77 57.15 175.40 54.01 



1 
* (CPU seconds) 

5.3.2 Conclusion 

With a minimum of effort, the HSLJOJtGB algorithm can be translated 

into a slight extension of HSV-TOSGB. This effort was found to reduce HSL 

conversion time by 43% on random input using unoptimized code, and by 

46% on optimized code. 



5.3.3. The Standard HSr,TOJZGB Algorithm 
From the 1979 Core,13 page 111-38: 

function VALUE( nl ,  n2, hue: real ) : real; 
begin 

if hue > 360 then hue := hue - 360; 
if hue < 0 then hue := hue + 360; 
if hue < 60 then VALUE := n l  + (n2 - nl)*hue/60; 
else if hue < 180 then VALUE := n2; 
else if hue < 240 then VALUE := n l  + (n2 - nl)*(24Uhue)/60; 
else VALUE : = n 1; 

end; 1 VALUE 1 

procedure HLSJOJGB( h s, 1 : real; var r,g,b: real ); 
begin 

if 1 <= 0.5 then M := 18(l+s) 
else M := l+s-1%; 

m := 2*1- M; 
if s = 0 then 

r := g := b := 1 
else begin 

r := VALUE( m,M,h+ 120); 
g := VALUE( m,M,h); * 

b := VALUE(m,M,h-120); 
end; 

end; 

5.3.4. The Standard HSY'.JIGB Algorithm 
From Smith.58 

procedure HSVJ'O_PGB( h, s, v : real; var r, g, b : real); 
var 

f,mn,k : real; 
i : integer; 

begin 
h := h 6; 
i := h; /* integer part of hue */ 
f := h - i; 
m := v8(l-s); 
n := v*(l-(s8f)); 
k := v8(l-(s8(l-f))); 
case ( i mod 6 ) of 
0 : (r, g, b) := ( v,k,m); 
1 : ( r , g ,  b):= (n,v,m); 
2 : (r, g, b) := ( rn,v,k); 
3 : (r, g, b) := ( rri,n,v); 
4 : (r, g, b) := ( k,m,v); 
5 : (r, g, b) := ( v.m,n); 

end; case j 
end; HSVJOJGB 



5.3.5. The new algorithm 

( given h , s ~  ,l on [O.. 11, return R,G,B on [O.. 11 j 
procned in h,sL,l ; 0utr.g.b); 
local variables 

v ,  min. s y ;  
wf; 
-t; 
ht; 
midl. mid2; 

bell@ P- 
if ( l <= 0.5) then 

v := 1 *(-1.0 + sL); 
else 

Y := l + SL -1 .sL; 
ii; 

if (v  = 0 )  then 
(r,g.b) := (0.0.0); 

else 
min:=l + l  -v; 

compute saturation in I-& system j 
s,, := (v %in) / v; 

h := h %; f map hue onto [0..6) ] 
mextant := door(h); I integer part d hue j 
fract := h -sextant; fractional part j 
wf := v 4pfraCt ; 
mid1 :=min+vsf; 
miQ :=v-vsf; 
case sextant d 

when 0 : (r.g.b) := ( v ,midl.min); 
when1 :(r.g.b):=(mid2.vmmi3.L); 
when 2 : (r,g.b) := ( min,v ,midi); 
when 3 : (r.g, b) := ( min.mid2.v); 
when4 :(r.g,b):=(midl,min,v); 
when 5 : (r,g.b) := ( v min.mid2); 

esac; 
ii; f nonalack 1 

end proc 



6. DISPUYING THE UNDlSmAYABLE 

When sending an rnRGB value for display on the monitor, two conditions 

may arise; the color may be too luminous for monitor reproduction, or it 

may possess a chromaticity outside the range of the monitor gamut. In this 

section, two quick and easy algorithms for obtaining "best" approximations 

are given. 

Luckily, such approximations are often nearly indistinguishable from 

the real color. To quote HuntsS1 

when the colour of en object in a colour picture ia appraised by an observer, it will 

generally look acceptable, prwid_ed it falls somewhere within the range cE cdours 

which that object customarily exhbits in werydap life." - (pp. 43) 

6.1. Luminance overflow 

L w n h z n c e  overflow occurs when the computed color has a luminance 

too great for the monitor. For example, the surface of the sun is too lumi- 

nous to reproduce accurately. In this case, it is desirable to maintain the 

chromaticity of the color, solely decreasing the luminance. 

Luminance overflow shows when any of the mRGB components are 

greater than 1. One solution to this overflow is to  normalize the vector, 

dividing each component by the maximum. 

While the mRGB system possesses no direct chromaticity dimensions, 

it can be proven that this rnRGB normalization does maintain chromaticity, 

as a consequence of Grassman's laws. 

The chromaticity coordinates mr , mg . mb of the color with luminance 

overflow ( mR, mG, mB ) are obtained by 



Let t denote the value of the maximum component. Then the chroma- 

ticity coordinates mr',mg',mb' of the normalized color ( mR/t, mC/t, 

mB/t ) are simply 

t ' t ' t  

t ' t ' t  

The chromaticity coordinates are unchanged, the normalized color 

possesses the same chromaticity as the old. 

8.1.1. An, obvious solution that fails  

Another obvious solution is to "clamp" to 1 those components which 

exceed unity, leaving the valid components unchanged. However, this can 

be easily shown to change the chromaticity of the displayed color. Sup- 

pose, for example, that the red component did not exceed one. The 

chromaticity coordinate ms' is derived by 

mr' = mR 
mR + maz(rnG,  1) + maz(mB, 1) 

The numerator remains unchanged, but the denominator has changed; obvi- 

ously, m r l # w ,  the chromaticity has been changed. 



This chromaticity change was used by Reeves% as part of a quick tech- 

nique to model the differing chromaticity of fire as its concentration 

changes. 

6.2. Unrealizable color. 

The second category of undisplayable color is umealizable color, a 

color whose chromaticity lies outside the monitor gamut. It is generally 

agreed that the "best possible" approximations maintain luminance and 

hue of the unrealizable color, changing solely saturation. The author is 

aware of two algorithms to display an approximation, and this section 

presents two new algorithms. 

- 
6.2.1. Ives-Abney-Yule 

The Ives-Abney-Yule c o ~ o d s e  is the oldest. The rationale of this 

compromise is that a "common ray in which colours vary in re& life is by a 

uniform addition of white to all c o l ~ u r s " . ~ ~  Since white lies at the center of 

the chromaticity diagram, their compromise is to construct an imaginary 

phosphor triple whose triangle does enclose all of color space. The coordi- 

nates of a color in this hypothetical color space are then used as the coordi- 

nates of the color in the monitor gamut. All colors will therefore be plotted 

abnormally close to the middle of the phosphor triangle, i.e. perturbed 

towards white. If only a few colors are unrealizable, this leaves much of the 

monitor gamut unused. 



figure 6.1 : the Ives-Abney- Y d e  compromise 

9)  
from Hunt, pp. 90 

Rather than perturb all colors, this perturbation can also be performed 

only on non-realizable colors. This loses uniqueness of displayed color, but 

retains accuracy of colors that were realizable beforehand, and lessens the 

unused portion of the gamut. 

6.2.2. Chromaticity clamping in RGB space 

In RGB space, this condition manifests when at least 1 component is 

less than zero. This super-saturation is reflected in the HSV space, the 

saturation becoming > 1: 

min = I-- 
- '  



By setting the saturation to 1, a color will be created which by 

definition will be realizable, and by construction differs only in saturation 

from the original color. 

Algorithm RGBBChromaticity_CZamp 

translate the RGB value to HSV 

[ the H, V components are OK, S will be > 1.0 j 

set S to  1.0 

translate back to HSV 

Since the correction is only performed if S > 1, uniqueness of displayed - 
color is lost. 

6.2.3. Chromaticity clamping in mRGB space 

The preceding algorithm, while extremely simple and provably correct 

in effect, clamps to RGB space, while displayed colors are normally 

specifled in mRGB space. As discussed in section (3.9.3), there is a major 

difference between the two! 

Again, chromaticity overflow implies that exactly one of (rnR,mG,mB) is 

less than zero. 



fspm 6.2: chronaticit y w wflovr in mRGB space 

* 

The algorithm works in mrgb space. by drawing a line between the 

white point and the color point. The intersection of this line with the moni- 

tor gamut represents a color with the same hue as the overflow color, the 

same luminance, but the maximurn possible saturation, just as in the RGB 

clamping algorithm. The new color point can then be translated back into 

mRGB space, since the luminance is maintained. 

The process, therefore, is t o  intersect a line drawn from the monitor 

white point to the undisplayable color with the line of displayable color. The 

color point a t  this intersection is then displayed, a t  the original luminance. 

Assume, for example, that mR >= mG >= mB; the other cases follow by 

symmetry. Then the situation in mrgb space is as below 



figure 6.3: chromaticity werjiou, in m r g b  space 

* 

The line intersects the triangle a t  the line ( b=O). The new color point 

is then computed by the following procedure: 

function mRGB-amp return point is 

{ given a color point (x,y), and white point coordinates (wx, wy), 

intersect the point with the line (x + y = I ) ]  

slope := ( y - wy ) / ( x - wx); 

b := wy - slope%; 

new2 := ( 1.0 - b ) / ( 1.0 + slope); 

n e w j  := 1.0 - news;  

return ( n e w s  , n e w j  ); 

end 

Finally, the mrgb coordinates are translated back into mRGB space by 

multiplying by the luminance. 



6.2.4. Code's algorithm 

In 1981, Cook,14 in a work on specular and diffuse reflection, came 

upon the same problem. His solution, which is similar to  the rnRGB clamp, 

is presented too briefly For detailed comparison. Cook simply states 

"the tristimulw Xn values are converted to a color space in which locations are 

specified by dominant wavelength and purity. The purity is then reduced while the 

dominant waveleng4th (and thus roughly the hue) is held constant until the color Lies 

inside the monitor gamut" (pp. 19) 

The difference lies in the color space of operation. The mRGB clamp 

works directly in mRGB space, with no need for any other translation. Cook 

translates from XYZ into A p  space, a fairly expensive process, to  determine 

(just as in the author's algorithm) the intersection with the line of display- 

able color, and then to  translate back. 

The two algorithms are therefore more alike than they are different. 

The mRGB clamp, however, is a quicker way of achieving the same effect. 



7. TRANSLATJIUG FROM KRGB TO SPECTRAL CURVES 

The color algorithms discussed in sections to come all deal with spec- 

tral reflectance and transmission curves of color. However, in practice 

these algorithms will tend to be embedded within graphics applications pro- 

grams, where the only available information is the mRGB (or sometimes 

RGB) value of the color. 

This section describes a technique to derive a spectral transmission 

curve from mRGB value, and a "quick and dirty" approximation technique 

to  derive a spectral reflectance curve from mRGB value. 

The transformation from a spectral curve to  a mRGB triple maps from 

an infmite-dimensional space ( B e  set of curves) to a three-dimensional one 

(the set of triples). This many-to-one mapping results in the phenomenon 

of metamerism; there are an infinite number of spectral curves that will 

yield the given mRGB value. 

Therefore, what is desired is simply to construct one possible curve, a 

considerably easier task. 

This can be done easily by use of one piece of information; the spectral 

transmission curves of the red. green, and blue phosphors of the monitor 

being used. These can either be measured directly, or can often be 

obtained (with slightly less accuracy) from the manufacturer. 

Each of the three curves can be easily stored in computer memory, in 

discrete array representation. 

Using Grassmans second law, the transformation is then' extremely 

simple. Assume the mRGB value is ( p, 7 8). Furthermore, let 

-(A), h p  (A), and Bmap(X) represent the spectral transmissions of 

the primaries. Then the transmission T ( h )  of the color ( p,7$ ) is given by 



fSgure 7.1: spectral infomadion for a typical monitor 
.. 

the red ,  green, tznd blue curves are scaled by .dl, 1 . 1 1 ,  tznd .28. 

7.1. mRGB to reflectance cume 

When a reflectance curve is desired, the situation is similar. The 

transmission curve obtained by the above equation can be considered an 

approximation to  the reflectance curve; a height of 0.5 a t  540 nm can be 

considered either a transmission of 0.5 units of energy (transmission curve) 

or as a reflectance of 50% of the incoming light (reflectance curve). 

7.2. limitations 

This quick approfirnation has two disadvantages. Flrst, as mentioned 

above, it returns a curve, not necessarily the curve desired. Second, the 

monitor curves represent bummission characteristics, while they are 

being used here to create reflection curves. This approximation is often 

perfectly valid; a green light shining off a white paper is the same as to a 



white light shining off a green paper. The only danger arises if any com- 

ponent of R is > 1, a perfectly valid situation in terms of transmission 

curves, but a semantically meaningless one for reflectance curves. In this 

case scaling must be done. 



8. Additive Color Mixture 

This chapter is the &st of three dealing with colw mizture, a term 

referring to the different techniques by which color is changed by physical 

processes; mixing of paints, combination of light, shining light through 

filters, etc. 

There is disagreement about not only the laws followed by the different 

types of mixture, but even the basic question of the number of types of mix- 

ture! Answers range from twfll51 to f o d 2  to eight.= In this presentation, 

four types of color mixture will be considered, a subset of the eight types 

mentioned by Duncan:" crd&it&, pl te r  subtract*re, dye subtmctive, and 

PQ-w. 

This chapter considers the Arst type of color mixture, &itive miz- . 
t w e .  

8.2. Additive mixture 

'When two or more lights are shone on each other, the color of the 

resultrng light is d e t e d n e d  by the principles of additive mizture. The 

resulting color is formed by the sum of the transmittances of the incoming 

lights, hence the term 'additive': 

where 

7'- (A) is the transmission of the output light a t  wavelength A, 

c, is the concentration of the i'th light, and 



Tt(A) is the transmission of the i'th input light a t  wavelength A. 

8.3. Additive mixture in RGB space 

Since RGB space is additive (due to Grassman's second and third laws), 

additive mixture can be simulated very easily in RGB space. Given the pres- 

ence of n colored lights in absolute concentrations cl . . c,, the color of 

the resulting light is simply 

The equation is modifled slightly in the case of additive mixture of sur- 

face colors. If small dots of one color are interspersed with small dots of 

another, the resultant color perceived is the average rather than the sum 

of the constituent colors: 

This equation forms the basis for all anti-aliasing algorithms, as well as 

the artistic technique of pointilism 



9.1. Introduction 

When colored light is shone through one or more a t e r s ,  or transmitted 

through a colored liquid. the color of the transmitted light is determined by 

the laws of nrb t rac t i vo  rnishrre.  Each Alter(surface) absorbs a certain per- 

centage of the incoming light, and transmits(reflects) the remainder. pro- 

cess is used in color photography, Altering, and inking. 

This chapter deals first with the case of hght shining through filters, 

and then with the case of light shining upon a colored dye. 

In classical subtractive mixture, a colored light is shone through one 

(or more) colored filters. The theory determining the color of the transmit- 

ted light is fairly simple, and was f i s t  determined by Bouger, Beer, and 

Lambert over 200 years ago. 

Each Alter absorbs a certain percentage of the incoming light flux at  

each wavelength, and transmits the remainder. No backwards reflection is 

assumed. 

Suppose the incoming light has a transmittance curve T, and the n 

Alters have transmittance curves of TI, Tz, . . . T, per unit thickness. Then 

the trans*ttance curve of the resultant hght U is simply 

There is a slight difference in the semantics of the transmittance 

curves. The curve for the incoming light, T, refers to  absolute light flux 

present at each wavelength; the fFlter curves refer to the .ratio of the 



transmitted flux to the penetrating flux, the so-called "internal spectral 

t r a n s m i t t a n ~ e " . ~ ~  

Filters with different thicknesses can be accommodated easily, as a 

filter of thickness X behaves identically to X filters of unit thickness. If, for 

example, a Alter with transmittance Ti of thickness 3 is laid on top of a 

Alter with transmittance T2 of thickness 2, then the transmittance is 

U = T T~~ T~~ 

This is simply a special case of equation (9.1). 

0.2.1. Implementation 

Given equation (9. I), the question now becomes one of implementation: 

Can subtractive mixture be simulated given only the RGB (or mRGB or XYZ) 

values of the incoming light and the Alters? 

Of course, due to metamerism, an infinite number of spectral curves 

can derive the same RGB values; it is well-documented that different filters 

with the same RGB value can have wildly diierent visual perfor- 

m a n ~ e . ~ ,  201 23* 39p 639 37 Therefore, the problem is really to 

"[iind] a function that yields plausible results. A 'plausible' result is one 

which would be expected based on experience based on experience with ordi- 

nary colored materials ..." - Joblwe,m pp . 35 

The author is aware of one existing algorithm to model subtractive 

mixture in the literature using heuristics, and two other algorithms are 

presented. 



9.2.1.1. Joblove 

In his Masters' thesis,37 Joblove attempted to model subtractive mix- 

ture by performing an algebraic transformation into a new color space, 

termed "ij chromaticity space", and performing geometric interpolation in 

that space. Joblove since found the algorithm to be inaccurate, and has dis- 

carded it.% 

8.2.1.2. The RGB Heuristic 

The RGB values of the filters can be considered as an approximation to 

the "percentage transmittance" of the color in each of the broad areas of 

the spectrum. For example, an orange filter (RGB (1,.5,0)) transmits all the 

reddish, half the greenish, and m n e  of the blue light that lands on it. Using 

this heuristic, Filtration mixture is easily simulated 

For example, passing cyan light through an orange, and then a grey 

fllter produces: 

CY an - ( O * l *  1 )  

orange - ( 1 , . 5 , 0 )  

grey - ( . 5 ,  . 5 ,  . 5 )  

result - ( 0 , . 25 ,  0 )  

The author implemented this program in 1982 at  the University of 

Wisconsin, where it was used by Meteorologists interested in remote sens- 

ing. While this algorithm is a gross simplification of the actual physics 

demonstrated in equation (9.1), it seemed to meet the users' requirement 

for "plausible results". 



8.2.1.9. mRGB heuristic 

Chapter (7) gave an algorithm to obtain transmittance curves from 

mRGB values. Using this method, transmittance curves can be obtained for 

each of the filters and the incoming light, and equation (9.1) followed pre- 

cisely: 

Algorithm nRGBJeur i s t i c  

compute transmittance curve approximation of each Alter 

for each wavelength do 

take the product of all transmittances by equation (9.1) 

use equation (7.1) to reconstruct mRGB from new curve 

This algorithm has been implemented, and some of its results are 

shorn on the following color page. It has been the authors' experience that 

this algorithm very well simulates filtration mixture. Particularly, it is the 

only algorithm of the four that simulates the impurities found in actual 

filters. 

9.3. Dyes 

The second case of classical subtractive mixture concerns the mixture 

of dyes. For present purposes, a dye may be defined as a liquid or soluble 

solid that imparts its color to any material immersed in the dye.28 There 

are two essential differences between dyes and pigments, the subjects of 

the next chapter. First, dyes dissolve comple te l y  into their medium, behav- 

ing as a s o l d i o n .  This is in marked contrast to pigments, which remain 

undissolved in suspension. Second, (due in large part to the f i s t  



difference), dyes Q not  s c a t t w  l ight ,  while p i g n d s  m ( q / . 2 1 t *  When light 

encounters a particle of dye, it is either absorbed by the dye or transmitted 

through it (undergoing classical subtractive filtration in the transmission). 

In the case of pigments, all three phenomenon may occur. 

In order to  simplify the treatment of pigments and dyes, the light is 

assumed perpendicular to the surface, an assumption made by most in the 

field.3Q 

The classic Fresnel equation for reflectance from a beam perpendicu- 

lar to the surface is 

* 

Where p is the Fresnel reflectance, n2 the index of refraction of the 

optically denser medium and n, that of the optically less dense. In the case 

of common oils n2 = 1.5, in the case of air n=1.0, and p evaluates to only 

0.04. In general, index of refraction may be a function of wavelength,23 a 

case that will not be considered here. 

Of course, this is not the sole factor in the answer; light may be multi- 

ply reflected MernaUy, and Anally this internally d i . e  light may be 

emitted. 

The physics are relatively simple. As shown in Agure (9.1) below, por- 

tions of the light are either reflected or transmitted at  each layer boun- 

dary. It is assumed that the background lies "in kont of, but not optically 

attached to"39 the dye layer. For this reason, this simulation only applies 

to  colored substances such as glass, gelatine, plastic, varnish, and lacquer 

Alm The optics involved when the background optically contacts the 

colorant are discussed in section (9.3.2). 



flgure 9.1: Qe trtznsmission and refiection 

f r o m  ~ u d d  ?'pp. 331 

In the present case, the percentage reflected is39 

In the case of filtered mixture, each -filter was represented as a 

separate component in the product. In the case of dyes, only one layer 

exists. the layer between the surface and the background. There are four 

variables in dye mixture: the thickmess X of the layer of dye, the abso7ption 

K of the dye, the cvncent7crtion c of the dye, and the t.rrmsmission T of the 

dye. In the simple case of dyes, when no scatter occurs, these quantities 

are related by Beer's and Bouger's laws, 

T = e + m  (9 .5)  

The new variable K represents the percentage of incoming light 

absorbed by the dye per unit thickness. K is a function of wavelength for 

each dye, not a single constant. Due to the absence of scatter, the 

transmission can thus be found solely in terms of the absorption and the 

thickness. 



The above equation only supplies one value for K. In the case of dye 

m u t u r e ,  when two or more dyes are present, it was Arst shown by Duncan19 

that the absorption coefficient of the mixture is the weighted average of the 

absorption coefficients of the dyes. In the case where the medium of 

suspension itself absorbs or colors the light (as is the case. for example, in 

heavy varnishes and tinted oils), the medium can be considered as simply 

another weight in the computation of K.le 

9.3.1. Implementation 

To review, the percentage of light reflected from the surface of a dyed 

surface (assuming incident light perpendicular to the surface, and a back- 

ground not in optical contact with the layer of colorant) can be determined 

precisely, and is a function of the index of refraction of the medium, the 

concentration of the dye, the thickness of the layer, and the absorption 

coeficient(s) of the dye(s). 

Algorithm DyeJ4kcture 

evaluate p by equation (9.3) 

for each wavelength do 

KM := weighted average of all absorptions for this wavelength 

compute Ti by equation (9.5) 

then compute R by equation (9.4) 

od 

compute RGB from series of R's computed 

Again, from the point of view of Computer Graphics, the problem 

becomes more difficult. The indices of refractions and absorption 



coefficients must become known to the graphics algorithm, from (possibly) 

nothing more than the mRGB values of the dyes. 

Varying simplifications can be made to obtain values for these vari- 

ables: 

1) The surrounding medium can be assumed as air, with index of refrac- 

tion of 1.0003.~~ 

2) The index of refraction of the medium can be assumed h o w n  by user 

specification. Failing this, as most media used as vehicles have indices 

of refraction ranging from 1.48 (light oil) to 1.66 (heavy oil), the pro- 

gram could simply pick a representative value. 1.5 may be a particu- 

larly good choice, lying extremely close to the indices for both glass, 

rosin, soybean oil, linseed "oil, and shellac. 

3) The concentration can either be set  to 1 (Bouger's case). or deter- 

mined by user specification as part of the interactive process. 

4) Since the absorption coefficients are a function of wavelength, it is 

impractical and unfair to assume user specification. This question is 

still very much an open one. The author is currently investigating a 

number of heuristics, including 

4.1) Using the technique outlined in chapter (7) to derive transmission 

curves of the dye, and (due to the absence of scatter), letting 

ic; = l-Tt. 

4.2) An wen cruder, but much quicker, approximation is to use the 

RGB value as an approximation, for each third of the spectrum, of 

the transmission. For example, consider a dye formed by yellow 

and red colorants. Then the dye would be assumed to transmit 

perfectly in the red, transmit 50% in the green, and not transmit 



at all in the blue. This simple RGB interpolation can be performed, 

(within the other assumptions!) due to  the interpolatory nature of 

absorption coefficients. 

9.3.2. A nnal note 

In the preceding section, the background lay behind, but did not opti- 

cally contact, the colorant layer. This is unfortunate from a graphics pro- 

gramming point of view; the ability to vary the background color, and see 

the concornrnitant change in the colorant appearance ( in the case of little 

concentrated or thinly layered dye) is desirable. 

In this case the mathematics become slightly more complex. Updating 

figure (9.1) for the new case, thefigure becomes 

f lpm 9.2: a dyed colorant ogdnst a background 

In this case, by resorting to the above Agure, it can be seen that the 

reflectance R is 



Where Re is the reflectance of the background Since p is known less 

than )5 and each of the other terms are guaranteed Sl, this sum may be 

converted into closed form: 



10. P I m A K Y  llllXTURE 

When two or more colored pigments are mixed in a suspension, the 

color of the suspension is determined by the process of pignzenf mizture. 

This process is by far the most complex of the types of mixture discussed. 

Paint programs, by definition, are often used to simulate the process of 

painting. Accordingly, it is desirable for paint programs to contain algo- 

rithmic simulations of the paint mixture process. This chapter first 

presents the optics of paint mixture, with a brief description of the 

different equations that have been developed. We conclude that the physics 

of paint mixture are too complex for a computer program to realistically 

and quickly implement; we then present a heuristic algorithm to simulate 

"ideal" paint mixture for a much simpler set of cases. 

10.1. Terminology 

Just as in subtractive mixture, consider a hght shining upon a surface. 

The intensity of the light will be denoted as I. The surface paint, also called 

the c o l ~ t ,  consists of one or more different types of p i g M  particles, 

which remain in suspension in the medium of suspension, termed the vehz- 

cle or binder. The paint rests upon a background, termed the canvas or 

gmund. If the paint is sufficiently thick so that the canvas plays no role in 

the perceived color of the surface, the paint is said to be of hiding thick- 

ness. The degree to which a given paint of a given thickness obscures the 

canvas is termed hiding pourw. 

The physics of the situation are quite complex, and are shown pictori- 

ally in the figure below: 



flgure 1 0 . 1 :  the path of light through paint 

f r o m  h a m ,  pp. 280 

- 

When the incident hght contacts the surface of the paint, some portion 

is reflected from the surface immediately by the Fresnel equation of sec- 

tion (9.3). Some is transmitted into the paint, and some is s c a t t e ~ e d ,  

changing direction within the paint. 

Once within the paint, a ray of light may contact a particle of pigment. 

Upon doing so, the process is repeated: some of the light is absorbed, some 

transmitted, and some reflected. Light within the paint is termed internal 

diff'use light. The amount of internal diffuse Light that eventually is 

transmitted back across the surface of the paint is termed the internal 

diffuse repe  ction. 

The total reflectance from the paint is the am, therefore, of the sur- 

face reflectance p and the & m e  reflectance R. The arnoqnt of diffuse 

light that is transmitted through the paint is termed T, similarly to sub- 

tractive mixture. 



Paint optics are therefore more diflicult than dye optics, due to the 

complex interaction between the light and the pigment. Yet it will be shown 

that even this optics model is a drastic simplification. 

Pigment mixture uses both additive and subtractive mixture in its 

modeling. Additive mixture occurs when the diffuse internal reflected light, 

consisting of a number of rays of different colors, is combined with the light 

reflected by the surface. Each time light contacts a pigment particle, or is 

transmitted or absorbed, classic subtractive mixture occurs. 

10.2. The Physics of Paint 

This section gives an extremely brief description of the optical 

behavior of paint. The cardinal equations and results are introduced in his- 

torical order, with a brief mention of the assumptions and limitations of 

each. Liberties have been taken with the notation used by the particular 

papers. in order to ensure a uniform notation:. 



Notation for Paint Optics 

meaning 

incident flux 

diffuse reflectance 

diffuse reflectance at distance i from the surface 

reflectance of the ground 

incident reflectance 

diffuse transmittance 

diffuse transmittance a t  depth i from the surface 

coefficient of absorption; 

the percentage of flux absorbed per unit thickness 

coefficient of scatter; 

the percentage of flux scattered per unit thickness 

thickness of the paint 

thickness of a layer of paint 

amount of flux moving towards the ground from the surface 

amount of flux moving towards the surface from the ground 

the Duncan reflectivity function 

concentration 

concentration of the i ' th  pigment 



Consider an intlnitely thin slice of the paint, of thickness dz. Due to 

light scattering caused by pigment particles, light can enter the layer from 

both the top and bottom. A certain flux I enters the layer from some direc- 

tion. By definition, K I dz of the flux will be absorbed, and S I dz will be 

sca t t e red  The remainder, I - (K+S) I dz will be transmitted through the 

layer. This creates the following system of differential equations, the 

Kdelka-Munk e q u a t i m : 4 1  

d y = - ( K + S ) y & + S z d z ,  (10.1) 

& =(K+S)z & - S z  & , 

Where y represents the flux moving from the top to the bottom, and z 

the flux moving in the oppositendirection. y, refers to the flux at a thick- 

ness i from the surface. 

In these terms. the percentage of diffuse reflectance R is z o  / yo , the [ I 
ratio of reflected Light to  incident light. Similarly, the diffuse transmittance 

T is x /  yo for a paint of th i chess  X. b I 
10.22. Amy (1937) 

Amy2 was the first to apply the Kubelka-Munk equations to  paint mix- 

ture. Amy solved the Kubelka-Munk differential equations and simplified, 

yielding 

where 



Amy then simplifies these equations greatly by adding two constraints. 

Firstly, if J?>>s2, then y RI K + S  and ?C/ 2 ( K + S ) .  The equations become 

T = e - W + W  , ( 1  0.3) 

Secondly, if a t  least one of X,S, or K is large, then e-x7 -0. This con- 

straint yields a simplified reflectance of 

For example, when K= l/ 6 , S =  l/ 3, this evaluates to .333. 

This simplified set  of equations exhibits two desirable properties: the - 
difluse transmittance T varies inversely with the exponential of the thick- 

ness, and the M u s e  reflectance R varies inversely with the coedicient of 

absorption K. 

Amy's equations, while simple, make three large assumptions: one of ( 

K ,  S , X ) is large, K'%s2, and the reflection from the canvas can be 

ignored. 

10.2.3. Duncan (1940) 

The major paper in the fleld of pigment mixture is that of Duncan.19 

Duncan uses the Amy formulae as "a basis from which, making certain 

assumptions, it is possible to deduce an equation by means of which the 

colours of paints containing a mixture of M e r e n t  pigments may be 

predicted correctly".lB 

Amy's third assumption was that canvas reflection could be ignored. 

This is the "certain assumption" kept by Duncan, and its consequences 



expanded. If the canvas reflectance can be ignored, the paint must be of 

hiding thickness, by definition. In this case "the thickness is such that any 

further increase therein produces no further change in colour by reflected 

light".lQ By referring to  equation (10.2)~ it follows that e" = 1, m d  equa- 

tion (10.2) becomes 

Amy's formula made two assumptions 

(10.5) 

involving K and S .  This formula 

represents the general case, "in which K and S may have any values and 

the proportion and nature of the pigments added may be such as to cause 

considerable variation in both K and S".lQ 
* 

Both equations (10.5) and (10.4) are derived from the same complex 

equation, (10.2); the equations are simplified differently depending on the 

assumptions made. 

The equation for R above may be re-written as 

p is the so-called "reflectivity function", lQ which essentially character- 

izes the entire problem in terms of one parameter. 

Equation (10.6) can be derived by solving equation (10.5) as a quadratic 

in S. the other root being S = 0. S = 0 is precisely the case of dyes. a spe- 

cial case of pigmentary mixture in which R evaluates to 0, there being no 

internally reflected light. 

Duncan solves the problem of pigment mixture quickly by mahng two 

assumptions: that the absorption and scatter coefficients of the mixture 

are the weighted averages of the absorption and scatter coefftcients of the 



individual pigments: 

Duncan provides no theoretical justification for this equation; it is 

assumed, and then confkmed by empirical testing. 

As a quick example, suppose two pigments are mixed in a 2:l ratio. 

Consider the computation of R for some particular wavelength, say 614 nm. 

Assume furthermore that K1 = .l, K2 = .3, S1 = .4, and S2 = .2. Then the 

average K = .167, the average S = .333 Then by equation (10.6), 

,333 p = -= 2. R can then be indirectly approximated by use of t a b l e ~ ~ ~ l ~ ~  
1.67 

as roughly .38. 

This result could also be wmputed by direct evaluation of equation 

(10.5): 

There are two signal contributions in Duncan's paper: the derivation of 

an equation (10.5), which describes the reflectance of a paint without any 

restrictions on the K and S values of the paint, and the "center of gravity" 

rule for the K and S values of a mixture of pigments. 

The Duncan algorithm has several limitations: 

1) The paint is assumed of hiding thichess .  

2) The medium of suspension is assumed clear and colorless, with index of 

refraction equal to that of the pigments (which are all assumed to pos- 

sess equal indices). 

3) The K and S values hold only for a certain medium. if the same pig- 

ments are suspended in a different medium, the values must be re- 

established experimentally; no transformation algorithm exists. la* 20* 21 



The most complex set of equations dealing with diffusing materials are 

those of Dunt1ey.Z Duntley attempted to remove all assumptions regarding 

the optical properties of the incident light and the material. The cost of 

this increased generality is increased computational complexity, and the 

use of ei@t constants, as opposed to the two of Kubelka and Munk, Amy, 

and Duncan. 

A detailed presentation is beyond the scope of this paper. Essentially, 

Duntley notes that the internally diffused light operates under different opt- 

ical properties than the incident bght, and has different scattering and 

absorption coefficients. In addition, the percentage of the light which is 

scattered backwards versus the-percentage scattered forwards "are, in gen- 

eral, not the same for the incoming light as for the internal diffuse light". 

Finally, the flu moving towards the surface undergoes slightly different 

refraction from that moving towards the bacwound.  

With these additional factors taken into account, With these relaxed 

assumptions, the differential system becomes (using Kubelka-Munk notation 

for the variables involved) 

dl',/ dz = -(K1 + B' + F')I1, , 

&/dz = P I ' ,  - Kz -Bz + B y  , 
-dy/dz = B'I', -Ky - B y  + Bz , 

Where 

I,, is the unscattered residue of the primary beam a t  depth z, 

K is the absorption coefficient for internal diffused flux, 

IT is the absorption coefficient for incident flux, 



S is the total scattering coefficient for internal diffused flux, 

S' is the total scattering coefficient for incident light. 

B is the percentage of S scattered backwards, 

B' is the percentage of S' scattered backwards, and 

F is the percentage of S scattered forwards, 

F' is the percentage of S' scattered forwards. 

This system is solved, yielding the following equations for dfluse 

transmittance T and diffuse reflectance R: 

w h e r e  

4 = ~ C ( K  + ~ B ) ] w  , 

Q' = (K+K')F' + (B+F')(B'+F1) 
(K"-f l )  + 2K'(F'+Bt) - 2KB + (F1+ B')' 

The above equations are daunting indeed. Duntley shows that in the 

specfic case of dyes (no scatter, B=B'=F=F'=O) the solutions reduce to 

those of the preceding chapter, R = 0 and T = e'rX. Similarly, in the case 

of infinite thickness, the solutions become -0 and 

The last simplification that can be performed is to assume that 

P'=O.Q'=l, in which case Duntley states his equations "represent a two- 

constant theory", the special case referred to previously. 

Finally, the Fresnel equation for surface reflection at  the surface boun- 

n2-1 
2 

dary was described in section (9.3) as p = (--) , for light with normal 
nz+n1 



incidence. In the case of diffuse light, with the simplifying assumption that 

the light is traveling in air, Duntley cites the much more complex equation 

of 

Duntley's extremely complex equations pose a number of severe prob- 

lems for computer implementation. First, these equations need to be 

evaluated across a spectrum, not simply once; the computational cost alone 

renders the technique impractical for real-time computation. Second, and 

more severely, the formula requires use of eight constants, each of which is 

a function of wavelength. Duntley recommends that these constants be 

derived experimentally for each particular mixture, which is obviously 

infeasible for computer graphics. No tables of these constants are avail- 

ablef, making computer implementation nearly impossible. 

Finally, it can be seen that even a mild increase in the complexity of 

the incident light behavior (diffuse vs. normal incidence) leads to  a large 

increase in computational complexity. 

SaundersonS found Duntley's equations slow and inconvenient, and 

uses the two-constant theory of Duncan, with minor optimizations made for 

the case of pigmented plastics. 

Saunderson's main contribution was the introduction of a correction 

factor: the value of the diffuse reflectance R "corresponds to 

.t to the author's knowledge 



85 

measurements made with the specimen immersed in a liquid of the same 

index of refraction".~Q In order to correct for this,! Saunderson showed that 

the true reflectance R' can be obtained from R by 

Where pt is the internal reflectance for completely diffuse light 

incident on the underside of the top layer. In general, this must be deter- 

mined experimentally; for plastics, values between 0.4 and 0.6 are typi- 

Cd. l&3QI 55 

In 1948, Kubelka40 derived a system of e q l i c i t  solutions for his 1931 
* 

system of equations, with background reflectance specifically included. In 

this system, R can be computed directly as 

1-Ro(a -b coth b S X )  
R = a-Rg+b cothb S X  ' 

This equation is perhaps the most useful of the four presented for R 

((10.1),(10.2),(10.5),(10.11)), giving R directly in terms of every variable of 

interest. 

For paint of hiding thickness, the above becomes 

If the paint is of hiding thickness, the thickness can be increased arbi- 

trarily. For infinite thickness, the equation further simplifies to 

4 paintings being rarely viewed underweter 



Which is precisely the special case of equation (10.5). 

10.2.7. Duncan (1949) 

In 1949, Duncan20 published a second paper on pigmentary mixture, 

which restates and expands on his Arst. Duncan makes several points in 

this paper that aid in computer implementation: 

1) In his original paper,1Q Duncan mentioned that the K and S values held 

only for the medium of measurement. In this paper, Duncan expands 

the point: * 

'pie values of the coefficients d scatter, and, to a lesser extent. of the coefficients 

of absorption of a pigment vary with the refractive index of the medium in which it 

in used. Values obtained in one medium therefore cannot be used for paints in 

mother medium unless it is d approximately the same refractive index ... In gen- 

eral tams, however, it can dated that the c d i c i e n t  of scatter falls as the refrac 

tive index of the medium approaches that of the pigment. The coefficient of 

absorption a h  falls slightly, a t  leaat in some cases, owing presumably to reduction 

in the amount of internal reflection inside the individual particles of pigment" pp. 

903 

2) Duncan states that the correction factor of SaundersonS5 (equation 

(10.10)) has only a minor effect, and can be ignored in practice. How- 

ever. in a later paper21 Duncan reverses this conclusion 

3) The accuracy of the computation need not be high: 

"For colour prediction work the caflicients of scatter and absorption of the pig- 

ments of interest should be determined for rough work at a minimum of 7 



wavelengths scattered throughout the spectrum; it would be advantageous to take 

about twice this number for greater accuracy.. . there is little point in &vine at an 

accuracy exceeding 510 per cent in the vdues of [K and S] or two significmt 

dglnes in the prediction of reflectances" - pp.305 

10.3. Discussion 

Four equations for diffuse reflectance have been presented; those of 

Amy, Duncan, Duntley, and Kubelka. 

The equation of Amy is unsuitable for general use, due to the restricted 

range of K and S for which it holds. Specifically, for white (highly scatter- 

ing) paints. the equation wi l l  predict significantly Less reflectance than 

correct. 
* 

The equation of Duntley, while perhaps the superior in terms of real- 

ism, requires six more constants than any other the others, which can only 

be derived experimentally. 

Duncan's equation simply reduces to a special case of Kubelka's 1948 

equation. Therefore. it appears that the optimal choice is as follows: if the 

user desires interaction with the canvas color, then the full Kubelka-Munk 

equation (10.12) is preferable. If the canvas can be ignored. then the 

sirnplifled Kubelka-Munk equation of Duncan (10.5) can be used. 

The equation for surface reflectance must also be chosen; the Fresnel 

equation (9.3), or Duntley's more complex (10.9). Unfortunately, the 

Fresnel equation cannot be chosen out of hand; as the next figure demon- 

strates, the two reflectances can be drastically different: 



figure 10.2: mmface reflectance f w  difluse and normaLLy incident light 

p o r n  Duntle y''pp. 66 

* 

For a typical oil paint, with index of refraction 1.5, the normally 

incident light has 4% surface reflectance, and the diffuse 9%. 

Due to this difference, this choice should be left to the user; in the case 

of user indifference, the quicker Fresnel equation could be used. 

10.3.1. A pseu&rcode implementation 

The results can be summarized by the following procedure to simulate 

paint mixture: 

proc PILi7LfJfiztu~e 

f o r  each wavelength h do 

I := incident flux a t  wavelength h 

p := surface reflectance , medium index of refraction n 

(by either equation (9.3) (10.9) ) 



R := diffuse reflectance , 

evaluated by result of C h o o s e ~ t u ~ e J ~  

R' := R corrected by equation (10.10) 

od 

the R' curve holds the reflected color 

end proc 

This algorithm, though slow*, is easily implementable, with one large 

exception; the provision of values for the variables: 

n )  The index of refraction of the medium, while in general a function of 

wavelength, can be assumed a constant for most purposes. Just as in 

subtractive mixture, this can be either entered by the user or any 

number of tables can be copsulted for representative values. 

I )  The intensity of incident flux is a function of wavelength. Using the 

technique of chapter (7) ,  only the mRGB (or, in this case, even RGB) 

' coordinates need be entered. Again, this simplicity makes user 

specification attractive. Otherwise a "typical" soft white could be used. 

Rg) The reflectance of the background can be approximated using the 

mRGB heuristic of chapter (7). If the background is unimportant to 

the user, then equation (10.5) can be used, an equation where no 

specification of background reflectance is needed. 

, 
K,S)The K and S values are the weighted averages of the K and S values of 

the component pigments. The problem therefore becomes to find the 

K and S values of each pigment, given only their RGB (or rnRGB) 

values. Even if only their English names are known to artistic users, 

In the simplest case (using equation (Q.3), Duncan mirture, and only one pigment), the al- 
gorithm requires 5n adds, 4n subtracts, 8n multiplies, 3n divides, and n square roots, where 
n is the number of wavelengths sampled. 



references (albeit o b ~ c u r e ) ~  exist giving xyY or XYZ values of common 

pigments. 

This is a very difficult problem indeed; the K and S are a function of 

medium and are always determined experimentally in practice. Heuristics 

to create reasonable values are currently under study. 

10.3.2. Limitations of the Theories 

More recent tests have shown that some of the basic equations may be 

limited in applicability. While most tests have verified the linear relation- 

ship between K/S and concentration, recently Hattorim found this relation- 

ship did not hold for very high wavelengths, while Beresford4 found a more 

severe inaccuracy due to imperf_ections in paint and dye technology. 

Perhaps the greatest limitation lies in the K and S values for a given 

pigment. As explained in section (10.2.7), these values are accurate only 

for a g i v e n  medium; the K and S values for a pigment in oil, for example, 

can be drastically different from those of the same pigment in water. This 

is highly unfortunate, and hinders severely the creation of a model that 

accurately handles changes in medium. 

10.3.3. Assumptions Common to the Theories 

The preceding. formulae, while of substantial complexity, nevertheless 

make a number of simplifying assumptions in order to ease the mathemat- 

ics: 

1) particle M e n r c t i o n .  All presentations have assumed no chemical or 

electrical interaction between either pigments of differing types, or 

pigments and medium. In fact, such interaction occurs in virtually all 

paintings, and often has a dramatic impact on the color of the 



paint121431171a In fact, an entire literature dealing solely with the 

chemical interactions between paints in a vehicle exists, with a theory 

all its own. 

2) particle clumping. Even ignoring chemical interaction, it is assumed 

that the particle grains are  uniformly and evenly distributed 

throughout the medium. In practice, some degree of floccdufimz 

(clumping) occurs in most paints, (indeed. some amount of flocculation 

is a desired goal in paint preparation)171a and, again, can drastically 

change the color which the paint would present n ~ r r n a l l y . ~ ~ * ~  

3) particle shape. All presentations have assumed that the hght transmit- 

ted through and reflected by the particles of pigment is diffuse in all 

directions. This is only true * if the pigment particles are spherical. In 

practice, wen  ignoring flocculation, pigment particles tend to be acir- 

cular, taking cylindrical, bullet-lie, or teardrop-shaped form.24vg0*48 

4) particle bolLndary btenrcCion. When light leaves a pigment particle 

and re-enters the medium, refraction, diffraction, and transmission all 

occur, just as  when Light enters the medium from the scene.48 The light 

traverses a boundary between medium of two dif!erent refractive 

indices. This effect has been ignored by all presentations. According 

to JuddlSQ the effect can be ignored only if the suspended particles 

have dimensions less than 10% the wavelength of the incident light, a 

condition which Duntleyz! specifically states not to hold for pigments. 

Introducing this effect introduces another physical theory all its own, 

with truly horrendous computational difficulty. For one thing, index of 

refraction of pigments tends to vary with ~ a v e l e n g t h ; ~ ~  modeling the 

refraction alone is extremely complex (see for example P a n g ~ n i s ) . ~ ~  



particle size. In addition to assuming that all particles are spherical, 

they are assumed to be of the same size, a gross s i m p l i A c a t i ~ n . ~ ~ ~ ~ ~ ~ ~  

the canvas s h p e .  For those presentations that deal with the case 

when the paint is not of hiding thickness, the canvas is sometimes 

assumed to be a perfect reflector, and crlways assumed to be perfectly 

smooth. In practice, neither is the case; even the whitest canvases 

reflect only 80% of incoming light, and rough canvas is, in fact, 

required in order to hold the paint to the canvas, in the case of water- 

color and pastel p a i n t ~ . ~ d ~ ? ~ *  

the surface shupe. Similarly, the surface the paint presents to the 

external environment is assumed to be of perfect smoothness. While 

this assumption is reasonable for pastel and watercolor, it is a gross 

distortion for tempera and especially oil. Much of the appearance of 

oil paintings is specifically due to the ridges and furrows built up in its 

surface.** 4787 

particle floating. The treatments have assumed the pigment particles 

perfectly dispersed throughout the paint. There are a number of cases 

where this assumption does not hold: in mat or semi-mat paint mms, 

where air penetrates into the top layers,sQ in "paint floating" where the 

pigment grains of higher fineness float towards the top,12143-3Q and in 

paint settling and drying, where a quite complex process of settling, 

drifting, and opacity change 0ccurs.l2*1~~148 

10.3.4. AppLications to other fields 

Throughout this chapter, the topic of paint mixture has been dis- 

cussed. This reduces to (in large part) a discussion of the interaction of 

light with particles suspended in a medium. 



This is exactly the situation encountered in two other areas of interest 

in computer graphics, the simulation of Clouds and of Fog.21 In both cases, 

particles (of water) are in suspension (in air), particles which partially 

absorb, partially reflect, and partially transmit the incoming light. Indeed, 

the very Arst paper of interest in simulation of paint mixture56 was mainly . 

interested in the visibility of objects through fogs. 

The treatments of both fog and clouds possess several large 

simpliAcations compared with pigmentary mixture; there is (generally) only 

one type of particle. which is spherical, which is evenly distributed, and 

which has well-known refractive index and color. In addition, in the case of 

fog, absorption can be generally ignored.81 Of course, this also allows the 

introduction of another entire body of work and research to be brought to - 
bear (see for e ~ a r n p l e ~ ~ * ~ ~ ~  29* 8 a 4 5 * 5 0  ). 

There are two complicating factors. F is t ,  clouds and fog are not (in 

general) static media. Over a short time-frame, they m a y  be considered so, 

but in general their boundaries, size, and density all vary with time. 

Second, and more importantly, the geometric boundary is no longer as 

well-behaved. In the case of paint, a horizontal sheet of paint lay on a plane 

of canvas, illuminated only from above. In the case of fog and clouds, a 

major part of the simulation lies in determination of the irregular and shift- 

ing boundary of the medium, and the diffuse nature of the illumination. 

10.3.5. Conclusion 

The degree to which the faulty assumptions and limitations weaken the 

power of the equations is extremely difficult to judge. I t  appears that in 

industry the equations tend to be used more as a guide than as a Arm 

e ~ b i t e r , ~ ~ ~ ~ l ~ ~ l ~  Kubelka's algorithm being within 3% of the actual value 



over 67% of the spectrum in a typical e ~ a r n p l e . ~  

All applications, furthermore, were performed in environments in 

which K and S could be established by testing for each pigment. When 

these values are not readily available, the problem becomes even more 

difficult. 

However, just as in subtractive mixture, what is really desired is not 

the result, as is the case in industry, but rather aplaurible result, a result a 

user of a computer graphics program would accept. The author has 

developed one such heuristic algorithm, and another is currently under 

development. 

10.4. A paint mixture heuristic - 
This section presents a heuristic algorithm designed to approximate a 

user's intuitive expectations of paint mixture. 

Referencing rules of common mixtures found in a r t  text- 

books,& 33*34*44 the author derived five "plausibility criteria" a heuristic 

algorithm should obey: 

1) any  paint mized  with itself  does not change color. 

2) wqj paint mized  wifh black maintains chromaficitv and becomes 

darker. 

3) m y  paint mized  wifh while maintains chromaticity and becomes 

Lighter. 

4) mry color mi zed  .in equal proportions with i ts  cornplematnry  produces 

Fey. 



5) blue paint and yellow paint miz t o  green paint. 

Of course, the literature is rife with pathological cases where one or 

more of these rules fail abysmally. However, these rules appeared both to 

the author and to  the artistic references consulted to  represent "normal" 

mixtures. 

The fourth rule may appear circular, as a paint's complement is often 

defined as the color of paint that, when mixed with it, produces grey paint. 

However, there are a number of "standard" complements that can be refer- 

enced: 

Blue and Orange 

Red and Green 

Yellow and Purple 

The tifth rule is debatable, due to the substantial ambiguity surround- 

ing the word "blue". Some claim this refers to  RGB ( 0 , 0 , 1 ) , others that 

it refers to RGB ( 0 , 1 , 1 ) ("cyan"). The author used the former interpre- 

tation. 

The algorithm maps each input paint color to a point in some color 

space. The color point of the resultant paint is the center of gravity of the 

input points, where the weights correspond to the relative proportions of 

the paints in the mixture. 

This center of gravity law serves to satisfy the first criterion, regard- 

less of color space; the center of gravity of a point is itself. 

The center of gravity law (all mixtures of two paints lie on a line 

between them) in combination with the second criterion (mixing with black 

darkens, and maintains chromaticity) implies that the line between any 



color point and the black point is a line of constant chromaticity. Thls con- 

dition holds in either HSL, HSV, or RGB space. 

Similarly, the third criterion (mixing with white lightens, and maintains 

chromaticity) implies that the line between any color point and the white 

point is a line of constant chromaticity. This condition holds only in HSL 

space; in HSV space, moving towards white will lighten and desaturate a 

color, changing its chromaticity. 

f i g w e  10.3: r n e g  vrith black and white in HSV and HSL 

The Pltst three rules, therefore, imply that the color space of operation 

be HSL, rather than HSV space. 

The arrangement of hues around the circle is somewhat arbitrary; any 

arrangement wfiich preserves isomorphism is valid. The fourth and fifth 

criteria can be satisfied by choosing a hue arrangement with red, yellow, 

and blue at 120 degree angles to each other, a RYB hue wheel: 

R R 



figure 10.4: RGB and RYB hue wheels 

The two wheels are related by a simple mapping. This HSL space with 

the RYE hue wheel will be denoted RYEJSL space. The paint mixture 

heuristic algorithm can be written simply as 

given a list P of paint colors in RGB, and a list W of relative weights, 

return color of mixture in RGB { 

func PrrintJfkztureJ7euristic : returns RGB value 

let Q := a list of every color in P, translated into RYBJSL space 

let C := center of gravity of Q, weighted by W 

let r := C, translated fzom RYBJSL to RGB 

re- ( r  ) 

end func 

For implementation, the RGB to RYBJISL conversion can be accomplished 

by using the standard RGB to HSL conversion, and changing the HSL hue into the 

RYBJSL hue: 

func Huegap ( hslJue : real ) : return real 

if hslJlue S 1 / 6 then 

return ZghslJme 1 stretch yellow 1 

elseif h s l l u e  5 2 / 3 then 

return ( ( ( hslbue - 1/6 ) / 2 ) - ( 1 / 3 ) ) { squeeze green 

else 

return hslJue 

n 



end func 

The author first implemented this algorithm in January 1982 at the Univer- 

sity of W i s c o n ~ i n , ~ ~  and it has been a t  use there since that date. I t  has also been 

installed in the Berkeley paint since March of 1983. In both cases it 

appears to have met users criteria for plausible results. 

10.4.1. Disadvantages 

The pigmentary heuristic has one severe disadvantage; it is inflezible.  Blue 

and yellow will always mix to  the same shade of green. There is no room in the 

model for simulation of media, of canvas, of lighting, or of drying. 

- 



11. CONCUISON 

"H. Ehoots ... ha s c m s  !" 

Color is the medium of communication of raster computer graphics; every 

image, every algorithm, and every scene rely on color science. 

Applications of color science span the gamut of computer graphics. In this 

thesis, a number of applications have been presented, resulting in new algo- 

rithms for computer graphics: 

A new derivation of a standard color system translation, resulting in an 

algorithm (chapter (5)) nearly twice the speed of the existing algorithm. 

Two algorithms to quickly and optimally display approximations to colors 

which are not reproducible on the display device (chapter (6)). 
* 

Two algorithms to approximate the color resulting from the passage of light 

through filters or off surfaces (chapter (9)). 

A heuristic algorithm for the simulation of pigment mixture. 
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